Basic Helix-Loop-Helix Transcription Factor Profiling of Lung Tumors Shows Aberrant Expression of the Proneural Gene Atonal Homolog 1 (ATOH1, HATH1, MATH1) in Neuroendocrine Tumors

2007 ◽  
Vol 22 (2) ◽  
pp. 114-123 ◽  
Author(s):  
B.A. Westerman ◽  
R.H.J. Breuer ◽  
A. Poutsma ◽  
A. Chhatta ◽  
L.A. Noorduyn ◽  
...  

Microarray-based expression profiling studies of lung adenocarcinomas have defined neuroendocrine subclasses with poor prognosis. As neuroendocrine development is regulated by members of the achaetescute and atonal classes of basic helix-loop-helix (bHLH) transcription factors, we analyzed lung tumors for expression of these factors. Out of 13 bHLH genes tested, 4 genes, i.e., achaetescute complex-like 1 (ASCL1, HASH1, Mash1), atonal homolog 1 (ATOH1, HATH1, MATH1), NEUROD4 (ATH-3, Atoh3, MATH-3) and neurogenic differentiation factor 1 (NEUROD1, NEUROD, BE-TA2), showed differential expression among lung tumors and absent or low expression in normal lung. As expected, tumors that have high levels of ASCL1 also express neuroendocrine markers, and we found that this is accompanied by increased levels of NEUROD1. In addition, we found ATOH1 expression in 9 (16%) out of 56 analyzed adenocarcinomas and these tumors showed neuroendocrine features as shown by dopa decarboxylase mRNA expression and immunostaining for neuroendocrine markers. ATOH1 expression as well as NEUROD4 was observed in small cell lung carcinoma (SCLC), a known neuroendocrine tumor. Since ATOH1 is not known to be involved in normal lung development, our results suggest that aberrant activation of ATOH1 leads to a neuroendocrine phenotype similar to what is observed for ASCL1 activation during normal neuroendocrine development and in lung malignancies. Our preliminary data indicate that patients with ATOH1-expressing adenocarcinomas might have a worse prognosis.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Karen A. Hudson ◽  
Matthew E. Hudson

The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.


1994 ◽  
Vol 14 (6) ◽  
pp. 4145-4154
Author(s):  
P Armand ◽  
A C Knapp ◽  
A J Hirsch ◽  
E F Wieschaus ◽  
M D Cole

We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites.


Author(s):  
Jingjing Geng ◽  
Tonglu Wei ◽  
Yue Wang ◽  
Xiaosan Huang ◽  
Ji-Hong Liu

Abstract The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Longzhen Piao ◽  
Zhaoting Yang ◽  
Ying Feng ◽  
Chengye Zhang ◽  
Chunai Cui ◽  
...  

Abstract Background Although the leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) is one of the mitochondrial inner membrane proteins that is involved in cancer prognosis in various tumors, LETM1 as a biomarker for prognostic evaluation of non-small cell lung carcinoma (NSCLC) has not been well studied. Methods To address this issue, we used 75 cases NSCLC, 20 cases adjacent normal lung tissues and NSCLC cell lines. We performed immunohistochemistry staining and western blot analysis as well as immunofluorescence imaging. Results Our studies show that expression of LETM1 is significantly correlated with the lymph node metastasis (p = 0.003) and the clinical stage (p = 0.005) of NSCLC. The Kaplan-Meier survival analysis revealed that NSCLC patients with positive expression of LETM1 exhibits a shorter overall survival (OS) rate (p = 0.005). The univariate and multivariate Cox regression analysis indicated that LETM1 is a independent poor prognostic marker of NSCLC. In addition, the LETM1 expression is correlated with cancer stemness-related gene LGR5 (p < 0.001) and HIF1α expression (p < 0.001), but not with others. Moreover, LETM1 expression was associated with the expression of cyclin D1 (p = 0.003), p27 (p = 0.001), pPI3K(p85) (p = 0.025), and pAkt-Thr308 (p = 0.004). Further, our studies show in LETM1-positive NSCLC tissues the microvessel density was significantly higher than in the negative ones (p = 0.024). Conclusion These results indicate that LETM1 is a potential prognostic biomarker of NSCLC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Damian Robert Sojka ◽  
Agnieszka Gogler-Pigłowska ◽  
Natalia Vydra ◽  
Alexander Jorge Cortez ◽  
Piotr Teodor Filipczak ◽  
...  

Abstract Heat shock proteins (HSPs) are a large group of chaperones considered critical for maintaining cellular proteostasis. Their aberrant expression in tumors can modulate the course of processes defined as hallmarks of cancer. Previously, we showed that both stress-inducible HSPA1 and testis-enriched HSPA2, highly homologous members of the HSPA (HSP70) family, are often overexpressed in non-small cell lung carcinoma (NSCLC). HSPA1 is among the best characterized cancer-related chaperones, while the significance of HSPA2 for cancer remains poorly understood. Previously we found that in primary NSCLC, HSPA1 was associated with good prognosis while HSPA2 correlated with bad prognosis, suggesting possible different roles of these proteins in cancer. Therefore, in this work we investigated the impact of HSPA1 and HSPA2 on NSCLC cell phenotype. We found that neither paralog-selective nor simultaneous knockdown of HSPA1 and HSPA2 gene expression reduced growth and chemoresistance of NSCLC cells. Only blocking of HSPA proteins using pan-HSPA inhibitors, VER-155008 or JG-98, exerted potent anticancer effect on NSCLC cells, albeit the final outcome was cell type-dependent. Pan-HSPA inhibition sensitized NSCLC cells to bortezomib, but not to platinum derivates. Our result suggests the inhibitors of proteasome and HSPAs seem an effective drug combination for pre-clinical development in highly aggressive NSCLC.


Genome ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 525-536 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Yong Wang ◽  
Xu-Hua Wang ◽  
Xia-Fang Tao ◽  
Qin Yao ◽  
...  

Basic helix-loop-helix (bHLH) proteins are highly conserved DNA-binding transcription factors of a large superfamily. Animal bHLH proteins play important regulatory roles in various developmental processes such as neurogenesis, myogenesis, heart development, and hematopoiesis. The jewel wasp (Nasonia vitripennis) is a good model organism of hymenoptera insects for studies of developmental and evolutionary genetics. In this study, we identified 48 bHLH genes in the genome of N. vitripennis. According to phylogenetic analysis, based on N. vitripennis bHLH (NvbHLH) motif sequences and structural domain distribution in their full-length protein sequences, the identified NvbHLH genes were classified into 36 bHLH families with 19, 12, 9, 1, 6, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Our classification to the identified NvbHLH family members confirms GenBank annotations for 21 of the 48 NvbHLH proteins and provides useful information for further characterization and annotation of the remaining 27 NvbHLH proteins. Compared to other insect species, N. vitripennis has the lowest number of bHLH family members. No NvbHLH members have been found in the families Net, MyoRa, and PTFa, while all other insect species have at least one member in each of the families. These data constitute a solid basis for further investigations into the functions of bHLH proteins in developmental regulation of N. vitripennis.


2019 ◽  
Vol 27 (1) ◽  
pp. 15-24
Author(s):  
Li-Wei Gao ◽  
Guo-Liang Wang

Abstract Lung cancer (LC), which includes small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), is common and has a high fatality rate. This study aimed to reveal the prognostic mechanisms of LC. GSE30219 was extracted from the Gene Expression Omnibus (GEO) database, and included 293 LC samples and 14 normal lung samples. Differentially expressed genes (DEGs) were identified using the Limma package, and subjected to pathway enrichment analysis using DAVID. MicroRNAs (miRNAs) targeting the DEGs were predicted using Webgestalt. Cytoscape software was used to build a protein-protein interaction (PPI) network and to identify significant network modules. Survival analysis was conducted using Survminer and Survival packages, and validation was performed using The Cancer Genome Atlas (TCGA) dataset. The good and poor prognosis groups contained 518 DEGs. miR-190, miR-493, and miR-218 for the upregulated genes and miR-302, miR-200, and miR-26 for the downregulated genes were predicted. Three network modules (module 1, 2, and 3) were identified from the PPI network. CDK1, MCM10, and NDC80 were the core nodes of module 1, 2, and 3, respectively. In module 1, CDK1 interacted with both CCNB1 and CCNB2. Additionally, CDK1, CCNB1, CCNB2, MCM10, and NDC80 expression levels correlated with clinical survival and were identified as DEGs in both GSE30219 and the TCGA dataset. miR-190, miR-493, miR-218, miR-200, and miR-302 might act in LC by targeting the DEGs. CDK1, CCNB1, CCNB2, MCM10, and NDC80 might also influence the prognosis of LC.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4821-4833 ◽  
Author(s):  
N.L. Brown ◽  
S. Kanekar ◽  
M.L. Vetter ◽  
P.K. Tucker ◽  
D.L. Gemza ◽  
...  

We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal development, we compared Math5 and Hes1 expression in wild-type and Pax6-deficient (Sey) embryos. Math5 expression is downregulated in Sey/+ eyes and abolished in Sey/Sey eye rudiments, whereas the bHLH gene Hes1 is upregulated in a similar dose-dependent manner. These results link Pax6 to the process of retinal neurogenesis and provide the first molecular correlate for the dosage-sensitivity of the Pax6 phenotype. During retinogenesis, Math5 is expressed significantly before NeuroD, Ngn2 or Mash1. To test whether these bHLH genes influence the fates of distinct classes of retinal neurons, we ectopically expressed Math5 and Mash1 in Xenopus retinal progenitors. Unexpectedly, lipofection of either mouse gene into the frog retina caused an increase in differentiated bipolar cells. Directed expression of Math5, but not Xath5, in Xenopus blastomeres produced an expanded retinal phenotype. We propose that Math5 acts as a proneural gene, but has properties different from its most closely related vertebrate family member, Xath5.


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3021-3030 ◽  
Author(s):  
L. Cai ◽  
E.M. Morrow ◽  
C.L. Cepko

To investigate the role(s) of basic helix-loop-helix genes (bHLH) genes in the developing murine cerebral cortex, Mash1, Math2, Math3, Neurogenin1 (Ngn1), Ngn2, NeuroD, NeuroD2 and Id1 were transduced in vivo into the embryonic and postnatal cerebral cortex using retrovirus vectors. The morphology and location of infected cells were analyzed at postnatal stages. The data indicate that a subset of bHLH genes are capable of regulating the choice of neuronal versus glial fate and that, when misexpressed, they can be deleterious to the survival of differentiating neurons, but not glia.


Sign in / Sign up

Export Citation Format

Share Document