A genome-wide identification and classification of basic helix-loop-helix genes in the jewel wasp, Nasonia vitripennis (Hymenoptera: Pteromalidae)

Genome ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 525-536 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Yong Wang ◽  
Xu-Hua Wang ◽  
Xia-Fang Tao ◽  
Qin Yao ◽  
...  

Basic helix-loop-helix (bHLH) proteins are highly conserved DNA-binding transcription factors of a large superfamily. Animal bHLH proteins play important regulatory roles in various developmental processes such as neurogenesis, myogenesis, heart development, and hematopoiesis. The jewel wasp (Nasonia vitripennis) is a good model organism of hymenoptera insects for studies of developmental and evolutionary genetics. In this study, we identified 48 bHLH genes in the genome of N. vitripennis. According to phylogenetic analysis, based on N. vitripennis bHLH (NvbHLH) motif sequences and structural domain distribution in their full-length protein sequences, the identified NvbHLH genes were classified into 36 bHLH families with 19, 12, 9, 1, 6, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Our classification to the identified NvbHLH family members confirms GenBank annotations for 21 of the 48 NvbHLH proteins and provides useful information for further characterization and annotation of the remaining 27 NvbHLH proteins. Compared to other insect species, N. vitripennis has the lowest number of bHLH family members. No NvbHLH members have been found in the families Net, MyoRa, and PTFa, while all other insect species have at least one member in each of the families. These data constitute a solid basis for further investigations into the functions of bHLH proteins in developmental regulation of N. vitripennis.

2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins participate in regulating of a series of biological and developmental processes in plants. Although several bHLH genes of citrus have been identified and previously characterized, a large number of bHLH members are still unknown.Results In this study, we genome-widely identified a total of 128 CgbHLHs from pummelo (Citrus grandis) that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 37 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, 22 of CgbHLHs were identified as the key candidates that respond to iron deficiency.Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2020 ◽  
Vol 21 (8) ◽  
pp. 624-644
Author(s):  
Qinglin Ke ◽  
Wenjing Tao ◽  
Tingting Li ◽  
Wenqiu Pan ◽  
Xiaoyun Chen ◽  
...  

Background: The basic helix-loop-helix (bHLH) transcription factor is one of the most important gene families in plants, playing a key role in diverse metabolic, physiological, and developmental processes. Although it has been well characterized in many plants, the significance of the bHLH family in barley is not well understood at present. Methods: Through a genome-wide search against the updated barley reference genome, the genomic organization, evolution and expression of the bHLH family in barley were systematically analyzed. Results: We identified 141 bHLHs in the barley genome (HvbHLHs) and further classified them into 24 subfamilies based on phylogenetic analysis. It was found that HvbHLHs in the same subfamily shared a similar conserved motif composition and exon-intron structures. Chromosome distribution and gene duplication analysis revealed that segmental duplication mainly contributed to the expansion of HvbHLHs and the duplicated genes were subjected to strong purifying selection. Furthermore, expression analysis revealed that HvbHLHs were widely expressed in different tissues and also involved in response to diverse abiotic stresses. The co-expression network was further analyzed to underpin the regulatory function of HvbHLHs. Finally, 25 genes were selected for qRT-PCR validation, the expression profiles of HvbHLHs showed diverse patterns, demonstrating their potential roles in relation to stress tolerance regulation. Conclusion: This study reported the genome organization, evolutionary characteristics and expression profile of the bHLH family in barley, which not only provide the targets for further functional analysis, but also facilitate better understanding of the regulatory network bHLH genes involved in stress tolerance in barley.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Karen A. Hudson ◽  
Matthew E. Hudson

The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Alexander J. Hron ◽  
Atsushi Asakura

Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.


2009 ◽  
Vol 20 (4) ◽  
pp. 236-246 ◽  
Author(s):  
X. Zheng ◽  
Y. Wang ◽  
Q. Yao ◽  
Z. Yang ◽  
K. Chen

1994 ◽  
Vol 14 (6) ◽  
pp. 4145-4154
Author(s):  
P Armand ◽  
A C Knapp ◽  
A J Hirsch ◽  
E F Wieschaus ◽  
M D Cole

We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites.


2001 ◽  
Vol 21 (5) ◽  
pp. 1866-1873 ◽  
Author(s):  
Lauren Snider ◽  
Hilary Thirlwell ◽  
Jeffrey R. Miller ◽  
Randall T. Moon ◽  
Mark Groudine ◽  
...  

ABSTRACT We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopusortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/β-catenin-regulated genessiamois and Xnr3, and the ability of β-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 1099-1110 ◽  
Author(s):  
P. Cserjesi ◽  
D. Brown ◽  
K.L. Ligon ◽  
G.E. Lyons ◽  
N.G. Copeland ◽  
...  

Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to regulate growth and differentiation of numerous cell types. Cell-type-specific bHLH proteins typically form heterodimers with ubiquitous bHLH proteins, such as E12, and bind a DNA consensus sequence known as an E-box. We used the yeast two-hybrid system to screen mouse embryo cDNA libraries for cDNAs encoding novel cell-type-specific bHLH proteins that dimerize with E12. One of the cDNAs isolated encoded a novel bHLH protein, called scleraxis. During mouse embryogenesis, scleraxis transcripts were first detected between day 9.5 and 10.5 post coitum (p.c.) in the sclerotome of the somites and in mesenchymal cells in the body wall and limb buds. Subsequently, scleraxis was expressed at high levels within mesenchymal precursors of the axial and appendicular skeleton and in cranial mesenchyme in advance of chondrogenesis; its expression pattern in these cell types foreshadowed the developing skeleton. Prior to formation of the embryonic cartilaginous skeleton, scleraxis expression declined to low levels. As development proceeded, high levels of scleraxis expression became restricted to regions where cartilage and connective tissue formation take place. Scleraxis bound the E-box consensus sequence as a heterodimer with E12 and activated transcription of a reporter gene linked to its DNA-binding site. The expression pattern, DNA-binding properties and transcriptional activity of scleraxis suggest that it is a regulator of gene expression within mesenchymal cell lineages that give rise to cartilage and connective tissue.


Author(s):  
Jingjing Geng ◽  
Tonglu Wei ◽  
Yue Wang ◽  
Xiaosan Huang ◽  
Ji-Hong Liu

Abstract The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.


Sign in / Sign up

Export Citation Format

Share Document