scholarly journals Computer vision-based techniques and path planning strategy in a slope monitoring system using unmanned aerial vehicle

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090430 ◽  
Author(s):  
Qing Li ◽  
Gaochen Min ◽  
Peng Chen ◽  
Yukun Liu ◽  
Siyu Tian ◽  
...  

Unmanned aerial vehicle is a typical field robot which can work in many unstructured environments like mines, forests, and even radiation areas. In our mine monitoring system built in a northeast province of China, special designed unmanned aerial vehicle is applied to take photos and perceive the environment. We select a series of image-based techniques to process aerial pictures to monitor the slope. The visual features are initially refined by histogram equalization. Then, the rocks and cracks can be detected by different digital image processing operators, like Canny, so as to assess displacements. Advanced semantic segmentation model, U-Net, is also selected to process the problem. Experimental results show that both Canny and U-Net can perceive the edges in pictures effectively, better than other operators. In addition, we model the inspection mission for mine slopes into a traveling salesman problem, then plan the path for unmanned aerial vehicle by swarm intelligence-based optimization.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4442
Author(s):  
Zijie Niu ◽  
Juntao Deng ◽  
Xu Zhang ◽  
Jun Zhang ◽  
Shijia Pan ◽  
...  

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


Author(s):  
Mat Nizam Mahmud ◽  
Muhammad Khusairi Osman ◽  
Ahmad Puad Ismail ◽  
Fadzil Ahmad ◽  
Khairul Azman Ahmad ◽  
...  

Author(s):  
Md. Al-Farabi ◽  
Muntasir Chowdhury ◽  
Md. Readuzzaman ◽  
Md. Hossain ◽  
Saifur Sabuj ◽  
...  

2020 ◽  
Vol 53 (1-2) ◽  
pp. 83-92 ◽  
Author(s):  
Bo Hang Wang ◽  
Dao Bo Wang ◽  
Zain Anwar Ali

To improve the performance of multi-unmanned aerial vehicle path planning in plateau narrow area, a control strategy based on Cauchy mutant pigeon-inspired optimization algorithm is proposed in this article. The Cauchy mutation operator is chosen to improve the pigeon-inspired optimization algorithm by comparing and analyzing the changing trend of fitness function of the local optimum position and the global optimum position when dealing with unmanned aerial vehicle path planning problems. The plateau topography model and plateau wind field model are established. Furthermore, a variety of control constrains of unmanned aerial vehicles are summarized and modeled. By combining with relative positions and total flight duration, a cooperative path planning strategy for unmanned aerial vehicle group is put forward. Finally, the simulation results show that the proposed Cauchy mutant pigeon-inspired optimization method gives better robustness and cooperative path planning strategy which are effective and advanced as compared with traditional pigeon-inspired optimization algorithm.


2016 ◽  
Vol 3 (1) ◽  
pp. 102-111
Author(s):  
Aleksandrs Urbahs ◽  
Rima Mickevičienė ◽  
Vasilij Djačkov ◽  
Kristīne Carjova ◽  
Valdas Jankūnas ◽  
...  

Abstract The paper gives brief description of the conventional and innovative hydrography survey methods and constraints connected with the realization. Proposed hydrographic survey system based on the use of Unmanned Aerial and Maritime systems provides functionality to conduct hydrographic measurements and environment monitoring. System can be easily adapted to fulfil marine safety and security operations, e.g. intrusion threat monitoring, hazardous pollutions monitoring and prevention operations, icing conditions monitoring.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6540
Author(s):  
Qian Pan ◽  
Maofang Gao ◽  
Pingbo Wu ◽  
Jingwen Yan ◽  
Shilei Li

Yellow rust is a disease with a wide range that causes great damage to wheat. The traditional method of manually identifying wheat yellow rust is very inefficient. To improve this situation, this study proposed a deep-learning-based method for identifying wheat yellow rust from unmanned aerial vehicle (UAV) images. The method was based on the pyramid scene parsing network (PSPNet) semantic segmentation model to classify healthy wheat, yellow rust wheat, and bare soil in small-scale UAV images, and to investigate the spatial generalization of the model. In addition, it was proposed to use the high-accuracy classification results of traditional algorithms as weak samples for wheat yellow rust identification. The recognition accuracy of the PSPNet model in this study reached 98%. On this basis, this study used the trained semantic segmentation model to recognize another wheat field. The results showed that the method had certain generalization ability, and its accuracy reached 98%. In addition, the high-accuracy classification result of a support vector machine was used as a weak label by weak supervision, which better solved the labeling problem of large-size images, and the final recognition accuracy reached 94%. Therefore, the present study method facilitated timely control measures to reduce economic losses.


2021 ◽  
Vol 13 (23) ◽  
pp. 4811
Author(s):  
Rudolf Urban ◽  
Martin Štroner ◽  
Lenka Línková

Lately, affordable unmanned aerial vehicle (UAV)-lidar systems have started to appear on the market, highlighting the need for methods facilitating proper verification of their accuracy. However, the dense point cloud produced by such systems makes the identification of individual points that could be used as reference points difficult. In this paper, we propose such a method utilizing accurately georeferenced targets covered with high-reflectivity foil, which can be easily extracted from the cloud; their centers can be determined and used for the calculation of the systematic shift of the lidar point cloud. Subsequently, the lidar point cloud is cleaned of such systematic shift and compared with a dense SfM point cloud, thus yielding the residual accuracy. We successfully applied this method to the evaluation of an affordable DJI ZENMUSE L1 scanner mounted on the UAV DJI Matrice 300 and found that the accuracies of this system (3.5 cm in all directions after removal of the global georeferencing error) are better than manufacturer-declared values (10/5 cm horizontal/vertical). However, evaluation of the color information revealed a relatively high (approx. 0.2 m) systematic shift.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 502 ◽  
Author(s):  
Jun Ni ◽  
Lili Yao ◽  
Jingchao Zhang ◽  
Weixing Cao ◽  
Yan Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document