scholarly journals Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel–serial (hybrid) manipulator

2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199296
Author(s):  
Anton Antonov ◽  
Alexey Fomin ◽  
Victor Glazunov ◽  
Sergey Kiselev ◽  
Giuseppe Carbone

The proposed study provides a solution of the inverse and forward kinematic problems and workspace analysis for a five-degree-of-freedom parallel–serial manipulator, in which the parallel kinematic chain is made in the form of a tripod and the serial kinematic chain is made in the form of two carriages displaced in perpendicular directions. The proposed manipulator allows to realize five independent movements—three translations and two rotations motion pattern (3T2R). Analytical relationships between the coordinates of the end-effector and five controlled movements provided by manipulator’s drives (generalized coordinates) were determined. The approach of reachable workspace calculation was defined with respect to available design constraints of the manipulator based on the obtained algorithms of the inverse and forward kinematics. Case studies are considered based on the obtained algorithms of inverse and forward kinematics. For the inverse kinematic problem, the solution is obtained in accordance with the given laws of position and orientation change of the end-effector, corresponding to the motion along a spiral-helical trajectory. For the forward kinematic problem, various assemblies of the manipulator are obtained at the same given values of the generalized coordinates. An example of reachable workspace designing finalizes the proposed study. Dimensions and extreme values of the end-effector orientation angles are calculated.

2012 ◽  
Vol 591-593 ◽  
pp. 2081-2086 ◽  
Author(s):  
Rui Ren ◽  
Chang Chun Ye ◽  
Guo Bin Fan

A particular subset of 6-DOF parallel mechanisms is known as Stewart platforms (or hexapod). Stewart platform characteristic analyzed in this paper is the effect of small errors within its elements (strut lengths, joint placement) which can be caused by manufacturing tolerances or setting up errors or other even unknown sources to end effector. The biggest kinematics problem is parallel robotics which is the forward kinematics. On the basis of forward kinematic of 6-DOF platform, the algorithm model was built by Newton iteration, several computer programs were written in the MATLAB and Visual C++ programming language. The model is effective and real-time approved by forwards kinematics, inverse kinematics iteration and practical experiment. Analyzing the resource of error, get some related spectra map, top plat position and posture error corresponding every error resource respectively. By researching and comparing the error spectra map, some general results is concluded.


2021 ◽  
Vol 13 (2) ◽  
pp. 125-134
Author(s):  
Fransisko Limanuel ◽  
Calvin Susanto ◽  
Ferry Rippun Gideon Manalu

This paper will discuss the calculation of inverse kinematic which will be used to control the 6-DOF articulated robot. This robot consists of 6 Dynamixel MX-28 smart servo with OpenCM 9.04 microcontroller. The articulated robot has been simplified to 4-DOF because there are no obstacles in the work area and no special movements are required. The calculation method uses the intersection point equation between the ball and the line, so that it can make it easier to determine the point in calculating the kinematic inverse. The experiment is carried out using the desired position as input for the kinematic inverse to produce the angle of each joint. From the angle of each joint obtained, it will be entered into forward kinematic so that the end-effector position will be obtained. The desired position will be compared with the end-effector position, and then how much difference will be calculated. From the experimental results, it was found that the inverse kinematic method which has been inverted by the forward kinematic produces the same final position. Keywords: 6-DOF manipulator, Articulated robot, inverse kinematics and forward kinematics, Dynamixel MX-28, OpenCM 9


1991 ◽  
Vol 113 (4) ◽  
pp. 481-486 ◽  
Author(s):  
H. Y. Lee ◽  
C. Woernle ◽  
M. Hiller

The inverse kinematic problem of the general 6R robot manipulator is completely solved by means of a 16th degree polynomial equation in the tangent of the half-angle of a revolute joint. An algorithm is developed to compute the desired joint angles of all possible configurations of the kinematic chain for a given position of the end-effector. Examples for robots with maximal 16 different configurations show that the polynomial degree 16 is the lowest possible for the general 6R robot manipulator. Further, a numerical method for the determination of the boundaries of the workspace and its subspaces with different numbers of configurations is developed. These boundaries indicate the singular positions of the end-effector.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


Author(s):  
Hairong Fang ◽  
Yuefa Fang ◽  
Ketao Zhang

This article presents a novel 3-DOF parallel manipulator extracted from an origami fold in the context of mechanisms. The parallel manipulator consists of a base, a platform and four chain-legs that connect the platform to base through revolute joints. Each chain-leg contains a closed-loop sub-chain, which is spherical 6R linkage with symmetrical angle lengths. The geometry of the parallel manipulator is revealed according to the configuration design and specifics of the origami fold. This leads to unravelling of the symmetric plane which is determined by the common points of spherical 6R linkages in the four chain-legs. Based on geometric approach, the solutions for both inverse and forward kinematics are derived and the reachable workspace is then analyzed.


2010 ◽  
Vol 166-167 ◽  
pp. 333-338
Author(s):  
Ciprian Rad ◽  
Calin Rusu ◽  
Radu Balan

This paper discusses the inverse and forward kinematics problem for a 2-dof parallel robot with actuator redundancy. The reachable workspace of the robot is generated for a set of parameters and a solution for the actuators is proposed in the final.


Robotica ◽  
2014 ◽  
Vol 33 (08) ◽  
pp. 1686-1703 ◽  
Author(s):  
Mohammad Reza Chalak Qazani ◽  
Siamak Pedrammehr ◽  
Arash Rahmani ◽  
Behzad Danaei ◽  
Mir Mohammad Ettefagh ◽  
...  

SUMMARYParallel mechanisms possess several advantages such as the possibilities for high acceleration and high accuracy positioning of the end effector. However, most of the proposed parallel manipulators suffer from a limited workspace. In this paper, a novel 6-DOF parallel manipulator with coaxial actuated arms is introduced. Since parallel mechanisms have more workspace limitations compared to that of serial mechanisms, determination of the workspace in parallel manipulators is of the utmost importance. For finding position, angular velocity, and acceleration, in this paper, inverse and forward kinematics of the mechanism are studied and after presenting the workspace limitations, workspace analysis of the hexarot manipulator is performed by using MATLAB software. Next, using the obtained cloud of points from simulation, the overall borders of the workspace are illustrated. Finally, it is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations.


Author(s):  
R. J. Urbanic ◽  
A. Gudla

The functional work space for a given orientation is a subset of the work envelope and is not intuitive to define for 6 axis industrial robots. A 2D boundary curve is derived for each desired end effector orientation and tool vector. This is done via a geometric analysis and using the Denavit-Hartenberg notation for the forward kinematic representation. The feasible region for all orientations is determined by the use of Boolean intersections. Disjoint regions may occur. Assessing these elements establishes the boundary limits for subsequent evaluation and optimization tasks. An ABB IRB 140 robot is used to highlight the methodology.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
A. H. Bouyom Boutchouang ◽  
Achille Melingui ◽  
J. J. B. Mvogo Ahanda ◽  
Othman Lakhal ◽  
Frederic Biya Motto ◽  
...  

SUMMARY Forward kinematics is essential in robot control. Its resolution remains a challenge for continuum manipulators because of their inherent flexibility. Learning-based approaches allow obtaining accurate models. However, they suffer from the explosion of the learning database that wears down the manipulator during data collection. This paper proposes an approach that combines the model and learning-based approaches. The learning database is derived from analytical equations to prevent the robot from operating for long periods. The database obtained is handled using Deep Neural Networks (DNNs). The Compact Bionic Handling robot serves as an experimental platform. The comparison with existing approaches gives satisfaction.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Sign in / Sign up

Export Citation Format

Share Document