EXPRESS: High Bladder Pressure Reduces the Ability to Filter Out Interference From Distractors in Low Perceptual Load Condition

2021 ◽  
pp. 174702182110688
Author(s):  
Hasan Gunduz ◽  
Turan Gunduz ◽  
Arzu Ozkan Ceylan

According to the load theory of attention, an active cognitive control mechanism is needed to ensure that behavior is controlled by target-relevant information when distractors are also perceived. Although the active cognitive control mechanism consists of working memory, cognitive flexibility, and inhibition components, predictions regarding the load effects of this mechanism were derived mostly from studies on working memory. We aimed to test whether these predictions are also valid for an inhibition component. The inhibitory load was manipulated physiologically by creating different bladder pressure and its effects on distractor interference were examined under low and high perceptual load conditions. Results indicated that the availability of inhibitory control resources was important for decreasing the interference of distractors in the low perceptual load condition and that the high perceptual load reduced the effects of distractors independently from the availability of inhibitory resources. Results were consistent with the predictions of load theory, and to the best of our knowledge, the study provided the first piece of evidence in terms of the load effect of inhibition component on distractor interference.

2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


2010 ◽  
Vol 22 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Jane Klemen ◽  
Christian Büchel ◽  
Mira Bühler ◽  
Mareike M. Menz ◽  
Michael Rose

Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.


2011 ◽  
Vol 23 (10) ◽  
pp. 2905-2919 ◽  
Author(s):  
Benjamin J. Tamber-Rosenau ◽  
Michael Esterman ◽  
Yu-Chin Chiu ◽  
Steven Yantis

Organisms operate within both a perceptual domain of objects and events, and a mnemonic domain of past experiences and future goals. Each domain requires a deliberate selection of task-relevant information, through deployments of external (perceptual) and internal (mnemonic) attention, respectively. Little is known about the control of attention shifts in working memory, or whether voluntary control of attention in these two domains is subserved by a common or by distinct functional networks. We used human fMRI to examine the neural basis of cognitive control while participants shifted attention in vision and in working memory. We found that these acts of control recruit in common a subset of the dorsal fronto-parietal attentional control network, including the medial superior parietal lobule, intraparietal sulcus, and superior frontal sulcus/gyrus. Event-related multivoxel pattern classification reveals, however, that these regions exhibit distinct spatio-temporal patterns of neural activity during internal and external shifts of attention, respectively. These findings constrain theoretical accounts of selection in working memory and perception by showing that populations of neurons in dorsal fronto-parietal network regions exhibit selective tuning for acts of cognitive control in different cognitive domains.


2019 ◽  
Author(s):  
Jürgen Kayser ◽  
Lidia Y.X. Wong ◽  
Elizabeth Sacchi ◽  
Lindsey Casal-Roscum ◽  
Jorge E. Alvarenga ◽  
...  

Proactive control is the ability to manipulate and maintain goal-relevant information within working memory (WM), allowing individuals to selectively attend to important information while inhibiting irrelevant distractions. Deficits in proactive control may cause multiple cognitive impairments seen in schizophrenia. However, studies of cognitive control have largely relied on visual tasks, even though functional deficits in schizophrenia are more frequent and severe in the auditory domain (i.e., hallucinations). Hence, we developed an auditory analog of a visual Ignore/Suppress paradigm. Healthy adults (N=40) listened to a series of 4 letters (600-ms SOA) presented alternately to each ear, followed by a 3.2-s maintenance interval and a probe. Participants were directed to either selectively ignore (I) to-be-presented letters to one ear, suppress (S) letters already presented to one ear, or remember (R) all presented letters. The critical cue was provided either before (I) or after (S) the encoding series, or simultaneously with the probe (R). Probes were encoding items presented to the attended/not suppressed ear (“Valid”), the ignored/suppressed ear (“Lure”), or not presented (“Control”). Replicating prior findings during visual Ignore/Suppress tasks, response sensitivity and latency revealed poorer performance for Lure than Control trials, particularly during the Suppress condition. Shorter Suppress than Remember latencies suggested a behavioral advantage when discarding encoded items from WM. Paradigm-related internal consistencies and 1-week test-retest reliabilities (n=38) were good to excellent. Findings validate these auditory WM tasks as a reliable manipulation of proactive control and set the stage for studies with schizophrenia patients who experience auditory hallucinations.


2019 ◽  
Vol 52 (3) ◽  
pp. 1161-1174
Author(s):  
Jürgen Kayser ◽  
Lidia Y. X. Wong ◽  
Elizabeth Sacchi ◽  
Lindsey Casal-Roscum ◽  
Jorge E. Alvarenga ◽  
...  

AbstractProactive control is the ability to manipulate and maintain goal-relevant information within working memory (WM), allowing individuals to selectively attend to important information while inhibiting irrelevant distractions. Deficits in proactive control may cause multiple cognitive impairments seen in schizophrenia. However, studies of cognitive control have largely relied on visual tasks, even though the functional deficits in schizophrenia are more frequent and severe in the auditory domain (i.e., hallucinations). Hence, we developed an auditory analogue of a visual ignore/suppress paradigm. Healthy adults (N = 40) listened to a series of four letters (600-ms stimulus onset asynchrony) presented alternately to each ear, followed by a 3.2-s maintenance interval and a probe. Participants were directed either to selectively ignore (I) the to-be-presented letters at one ear, to suppress (S) letters already presented to one ear, or to remember (R) all presented letters. The critical cue was provided either before (I) or after (S) the encoding series, or simultaneously with the probe (R). The probes were encoding items presented to either the attended/not suppressed ear (“valid”) or the ignored/suppressed ear (“lure”), or were not presented (“control”). Replicating prior findings during visual ignore/suppress tasks, response sensitivity and latency revealed poorer performance for lure than for control trials, particularly during the suppress condition. Shorter suppress than remember latencies suggested a behavioral advantage when discarding encoded items from WM. The paradigm-related internal consistencies and 1-week test–retest reliabilities (n = 38) were good to excellent. Our findings validate these auditory WM tasks as a reliable manipulation of proactive control and set the stage for studies with schizophrenia patients who experience auditory hallucinations.


Author(s):  
Nilli Lavie ◽  
Polly Dalton

Research has highlighted a puzzling discrepancy in our selective attention performance: whereas in some circumstances we are able to be highly selective, at other times we can exhibit high levels of distraction. The load theory of attention and cognitive control provides an explanation for these contrasting observations, proposing that the extent to which people can focus their attention in the face of irrelevant distractions depends on the level and type of information load involved in their current task. According to the theory, the extent to which unattended visual information is perceived depends on the perceptual load of the attended task, such that increasing the level of perceptual load in the task decreases processing of task-irrelevant stimuli. Effective prioritization of task-relevant stimuli in the face of competition from irrelevant distractors is proposed to depend on the availability of executive control functions. Thus, loading executive control results in increased processing of irrelevant stimuli. This chapter presents converging research from a wide range of approaches in support of these proposals, as well as highlighting some of load theory’s wider influences in areas as diverse as emotion processing, developmental psychology, and the understanding of psychological disorders.


Author(s):  
Amber McFerren ◽  
Justin Riddle ◽  
Christopher Paul Walker ◽  
John B Buse ◽  
Flavio Frohlich

Frontal-midline theta (FMT) oscillations are increased in amplitude during cognitive control tasks. Since these tasks often conflate cognitive control and cognitive effort, it remains unknown if FMT amplitude maps onto cognitive control or effort. To address this gap, we utilized the glucose facilitation effect to manipulate cognitive effort without changing cognitive control demands. We performed a single-blind, cross-over human study in which we provided participants with a glucose drink (control session: volume-matched water) to reduce cognitive effort and improve performance on a visuospatial working memory task. Following glucose consumption, participants performed the working memory task at multiple timepoints of a three-hour window to sample across the rise and fall of blood glucose. Using high-density electroencephalography (EEG), we calculated FMT amplitude during the delay period of a working memory task. Source localization analysis revealed that FMT oscillations originated from bilateral prefrontal cortex. We found that glucose increased working memory accuracy during the high working memory load condition, but decreased FMT amplitude. The decrease in FMT amplitude coincided with both peak blood glucose elevation and peak performance enhancement for glucose relative to water. Therefore, the inverse association between glucose and task performance provided causal evidence that the amplitude of FMT oscillations may correspond to cognitive effort, rather than cognitive control. Due to the COVID-19 pandemic, data collection was terminated prematurely; the preliminary nature of these findings due to small sample size should be contextualized by rigorous experimental design and use of a novel causal perturbation to dissociate cognitive effort and cognitive control.


2016 ◽  
Vol 30 (4) ◽  
pp. 141-154 ◽  
Author(s):  
Kira Bailey ◽  
Gregory Mlynarczyk ◽  
Robert West

Abstract. Working memory supports our ability to maintain goal-relevant information that guides cognition in the face of distraction or competing tasks. The N-back task has been widely used in cognitive neuroscience to examine the functional neuroanatomy of working memory. Fewer studies have capitalized on the temporal resolution of event-related brain potentials (ERPs) to examine the time course of neural activity in the N-back task. The primary goal of the current study was to characterize slow wave activity observed in the response-to-stimulus interval in the N-back task that may be related to maintenance of information between trials in the task. In three experiments, we examined the effects of N-back load, interference, and response accuracy on the amplitude of the P3b following stimulus onset and slow wave activity elicited in the response-to-stimulus interval. Consistent with previous research, the amplitude of the P3b decreased as N-back load increased. Slow wave activity over the frontal and posterior regions of the scalp was sensitive to N-back load and was insensitive to interference or response accuracy. Together these findings lead to the suggestion that slow wave activity observed in the response-to-stimulus interval is related to the maintenance of information between trials in the 1-back task.


Sign in / Sign up

Export Citation Format

Share Document