The social structure of 70 years of literature on Human Reliability

Author(s):  
Marilia A Ramos ◽  
Riccardo Patriarca ◽  
Nicola Paltrinieri

From its first applications to the military domain, HRA progressed to applications in Nuclear Power Plants (NPPs) operations, when development and validation of methods mainly targeted their use in Probabilistic Risk Assessments. In recent years, advances in HRA include the extension to various application fields, the development of new methods or enhancement of existing ones, data collection efforts, among others. These advances are possible due to the increasing number of authors on HRA and collaboration between them. Systematic literature reviews have been increasingly used for understanding various aspects of a research field. While recent reviews have provided an overview of the topics addressed by HRA research, the social structure of the field has not yet been fully explored. This paper discusses the social structure of HRA through 70 years of literature. The review aims at responding to how the links between different authors groups were created, that is, which large-scale projects, geographical proximity, or research topics contributed to these connections. The results indicate that (1) while the research on HRA was mostly based in the U.S.A. before 2000, China, Japan, and South Korea are significant contributors to the recent literature; (2) despite the increasing diversity of application fields, such as applications to the maritime and offshore industry, the main focus on NPPs operations is persistent since the 1980s; (3) due to large research projects, favored by a connected world, the physical workspace does not limit current collaboration among authors.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 414
Author(s):  
Atsuo Murata ◽  
Waldemar Karwowski

This study explores the root causes of the Fukushima Daiichi disaster and discusses how the complexity and tight coupling in large-scale systems should be reduced under emergencies such as station blackout (SBO) to prevent future disasters. First, on the basis of a summary of the published literature on the Fukushima Daiichi disaster, we found that the direct causes (i.e., malfunctions and problems) included overlooking the loss of coolant and the nuclear reactor’s failure to cool down. Second, we verified that two characteristics proposed in “normal accident” theory—high complexity and tight coupling—underlay each of the direct causes. These two characteristics were found to have made emergency management more challenging. We discuss how such disasters in large-scale systems with high complexity and tight coupling could be prevented through an organizational and managerial approach that can remove asymmetry of authority and information and foster a climate of openly discussing critical safety issues in nuclear power plants.


Author(s):  
Deqi Yu ◽  
Jiandao Yang ◽  
Wei Lu ◽  
Daiwei Zhou ◽  
Kai Cheng ◽  
...  

The 1500-r/min 1905mm (75inch) ultra-long last three stage blades for half-speed large-scale nuclear steam turbines of 3rd generation nuclear power plants have been developed with the application of new design features and Computer-Aided-Engineering (CAE) technologies. The last stage rotating blade was designed with an integral shroud, snubber and fir-tree root. During operation, the adjacent blades are continuously coupled by the centrifugal force. It is designed that the adjacent shrouds and snubbers of each blade can provide additional structural damping to minimize the dynamic stress of the blade. In order to meet the blade development requirements, the quasi-3D aerodynamic method was used to obtain the preliminary flow path design for the last three stages in LP (Low-pressure) casing and the airfoil of last stage rotating blade was optimized as well to minimize its centrifugal stress. The latest CAE technologies and approaches of Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Fatigue Lifetime Analysis (FLA) were applied to analyze and optimize the aerodynamic performance and reliability behavior of the blade structure. The blade was well tuned to avoid any possible excitation and resonant vibration. The blades and test rotor have been manufactured and the rotating vibration test with the vibration monitoring had been carried out in the verification tests.


Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


2014 ◽  
Vol 521 ◽  
pp. 530-535
Author(s):  
Meng Wang ◽  
Jian Ding ◽  
Tian Tang ◽  
Zhang Sui Lin ◽  
Zhen Da Hu ◽  
...  

The current situation of nuclear power plants at home and abroad is described, and the impact of large-scale nuclear power accessing to the grid is analyzed, specifically in the aspects of nuclear power modeling, simulation, load following, reliability, fault diagnosis, etc. Nuclear power accessing to the grid will bring a series of problems, the causes of each problem, the main solutions and future development directions are summarized.


Author(s):  
Jean-Pierre Gros

AREVA has been running since decades nuclear reprocessing and recycling installations in France. Several industrial facilities have been built and used to this aim across the time. Following those decades and with the more and more precise monitoring of the impact of those installations, precise data and lessons-learned have been collected that can be used for the stakeholders of potential new facilities. China has expressed strong interest in building such facilities. As a matter of fact, the issue of accumulation of spent fuel is becoming serious in China and jeopardizes the operation of several nuclear power plants, through the running out of space of storage pools. Tomorrow, with the extremely high pace of nuclear development of China, accumulation of spent fuel will be unbearable. Building reprocessing and recycling installations takes time. A decision has to be taken so as to enable the responsible development of nuclear in China. Without a solution for the back end of its nuclear fuel cycle, the development of nuclear energy will face a wall. This is what the Chinese central government, through the action of its industrial CNNC, has well understood. Several years of negotiations have been held with AREVA. Everybody in the sector seems now convinced. However, now that the negotiation is coming to an end, an effort should be done towards all the stakeholders, sharing actual information from France’s reference facilities on: safety, security, mitigation measures for health protection (of the workers, of the public), mitigation measures for the protection of the environment. Most of this information is public, as France has since years promulgated a law on Nuclear transparency. China is also in need for more transparency, yet lacks means to access this public information, often in French language, so let’s open our books!


Britannia ◽  
2017 ◽  
Vol 48 ◽  
pp. 177-194 ◽  
Author(s):  
Rebecca Gowland

ABSTRACTHuman skeletal remains from Roman Britain are abundant and provide a rich repository of social as well as biological information concerning health, migration, diet and body/society interactions. At present, skeletal remains tend to be marginalised in studies of Roman trade, the military, economy, urbanisation and the like, yet they have huge potential to contribute to current debates. This article aims to highlight the potential of bioarchaeological analysis for understanding aspects of social identity in Roman Britain through the use of a more integrated, theoretical approach towards embodied interactions. It encourages future collaborative scholarship between bioarchaeologists, archaeologists and historians. The social determinants of health and identity will vary greatly between regions and the only way of establishing the diversity of life across the Roman Empire is through the instigation of a more comprehensive, large-scale, integrated study of funerary and skeletal assemblages.


Author(s):  
Xinyu Wei ◽  
Hongbin Ma ◽  
Xiaowei Xiong ◽  
Duanjie Yang ◽  
Zhaorong Shang

In China, the radioactive environmental impact assessment (EIA) for nuclear power plants (NPPs) had been carried out in detail due to the specific characteristic of radiation and the social universal attention. However, the nonradioactive environment impact assessment for NPP doesn’t get enough attention. This should be improved, since the operation of NPPs could cause some serious nonradioactive environment impacts. Based on the investigation of EIA for American NPPs, the following suggestions were put forward for Chinese EIA: (1) the laws and regulations in China need to be revised for the EIA of NPPs; (2) the statistics of chemicals or biocides used in the operation of NPPs and their discharged concentration need to be tested; (3) the impact assessments of nonradioactive gas emissions as well as hazardous wastes need to be carried out to meet the national requirements; and (4) the monitoring of nonradioactive waste also needs to be carried out for NPPs to obtain the basic data.


10.29007/j32s ◽  
2019 ◽  
Author(s):  
Anna Braun ◽  
Mohcine Chraibi ◽  
Lukas Arnold

Nature and human-made hazards, like hurricanes, inundations, terroristic attacks or in- cidents in nuclear power plants, make it necessary to evacuate large urban areas in a short time. So far, the consideration of railway transportation is rarely part of the evacuation strategies. One of the reasons is the unknown capacity of this infrastructure.In the case of hurricanes Katrina and Rita (USA) the evacuation was accomplished with pri- vate vehicles and buses. In Germany, especially in the conurbation of Nordrhein-Westfalen, where many roads are overloaded during the daily rush hours, it will not be possible to use only road dependent vehicles like private cars or busses to evacuate a large number of people into save areas.After the nuclear power plant disaster of Fukushima, the working group ‘AG Fukushima’ was founded, which recommends the use of trains for large-scale emergency evacuations. However, it is not clear if the capacity of train stations is enough to handle these large evacuations in time. Hence, this work deals with the question of how the capacity of train stations can be quantified and optimised for this application. In order to estimate the capacity of train stations we use and further develop the Ju ̈lich Pedestrian Simula- tor (JuPedSim), a software for pedestrian dynamics simulations. Therefore, a model of a train station is built in JuPedSim and several parameters like the inflow and outflow of the pedestrians are examined, to find the best routing strategy and organisational ac- tions inside the station. The focus of this contribution lies in the identification of critical bottlenecks. An estimation of which parameters are influencing congestion at these bottle- necks is presented. Additionally, organisational strategies are outlined, which can prevent congestion and increase the capacity of a train station.


Sign in / Sign up

Export Citation Format

Share Document