scholarly journals Human umbilical-cord mesenchymal stem cells inhibit bacterial growth and alleviate antibiotic resistance in neonatal imipenem-resistant Pseudomonas aeruginosa infection

2019 ◽  
Vol 26 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Zhuxiao Ren ◽  
Xuaner Zheng ◽  
Haoming Yang ◽  
Qi Zhang ◽  
Xiaohong Liu ◽  
...  

Human umbilical-cord mesenchymal stem cells (hUCMSCs) are a safe and convenient source of MSCs and have shown beneficial effects in neonatal infection and sepsis animal models. However, the factors leading to improved outcomes are still unclear. The aim of this study was to investigate the antibacterial effect and regulation of antimicrobial resistance of hUCMSCs. We separated imipenem-resistant Pseudomonas aeruginosa (PA) from neonates and incubated it with hUCMSCs as well as their culture medium. Assessment of direct inhibition of bacterial growth was done by counting CFUs. The concentration of antibacterial peptides in the culture medium of hUCMSCs was measured. Standard PA was inoculated with a sub-inhibitory concentration of imipenem with and without hUCMSC conditioned medium and antimicrobial peptides. The sensitivity to imipenem was detected until PA showed resistance to imipenem. Outer membrane protein (OprD2) mRNA expression in PA before and after the induction of imipenem resistance was analysed. We found that HUCMSCs possessed direct antimicrobial properties against bacteria and could alleviate antibiotic resistance via reserving OprD2 expression in PA.

2018 ◽  
Vol 10 (3) ◽  
pp. 222-30
Author(s):  
Veronika Maria Sidharta ◽  
Elizabeth Henny Herningtyas ◽  
Christine Ayu Lagonda ◽  
Dilafitria Fauza ◽  
Yuyus Kusnadi ◽  
...  

BACKGROUND: Secretome production by stem cells depends on their culture conditions such as oxygen concentration and the composition of the culture media. In this study, we investigated the secretion of neurotrophic growth factors of human umbilical cord mesenchymal stem cells (hUC-MSCs) in amino acid-rich culture medium and under hypoxic condition.METHODS: hUC-MSCs were cultured in normoxic and various hypoxic (1%, 5%, 10%) conditions in an amino acid-rich culture medium. The end-point parameters (cell proliferation and survival, cell morphology and growth factor secretion) were measured at 3 time-points (48 hours, 72 hours and 96 hours). ELISA-based methods were used for neurotrophic factors detection, including neurotrophic growth factor (NGF), vascular endothelial factor (VEGF), and brain-derived neurotrophic factor (BDNF).RESULTS: NGF secretion was not detectable at any time points both in normoxia and hypoxia. BDNF secretion under normoxia was induced at 48 h time point and reached the highest level at an average of 181.9±13.01 pg/mL at 96 hours, whereas hypoxia exposure to hUC-MSCs only induced the BDNF secretion at low level. VEGF secretion was barely detectable in normoxic condition. However, VEGF secretion reached the highest level at an average of 7707.55±2110.85 pg/mL in 5% hypoxia at 96 hours.CONCLUSION: Combination of amino acid-rich culture medium and hypoxia condition dramatically induced high VEGF secretion by hUC-MSCs, especially at 5% hypoxia, induced mild BDNF secretion and had no effect toward NGF secretion.KEYWORDS: human umbilical cord mesenchymal stem cells, neurotrophic growth factor, amino acid-rich, hypoxia


2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


Sign in / Sign up

Export Citation Format

Share Document