Adjunctive Therapies to Optimize Closed-loop Glucose Control

2021 ◽  
pp. 193229682110327
Author(s):  
Shylaja Srinivasan ◽  
Laya Ekhlaspour ◽  
Eda Cengiz

Closed-loop insulin delivery systems are fast becoming the standard of care in the management of type 1 diabetes and have led to significant improvements in diabetes management. Nevertheless, there is still room for improvement for the closed-loop systems to optimize treatment and meet target glycemic control. Adjunct treatments have been introduced as an alternative method to insulin-only treatment methods to overcome diabetes treatment challenges and improve clinical and patient reported outcomes during closed-loop treatment. The adjunct treatment agents mostly consist of medications that are already approved for type 2 diabetes treatment and aim to complete the missing physiologic factors, such as the entero-endocrine system, that regulate glycemia in addition to insulin. This paper will review many of these adjunct therapies, including the basic mechanisms of action, potential benefits, side effects, and the evidence supporting their use during closed-loop treatment.

2019 ◽  
Vol 80 (11) ◽  
pp. 665-669
Author(s):  
CK Boughton ◽  
R Hovorka

The prevalence of diabetes in the inpatient setting is increasing, and suboptimal glucose control in hospital is associated with increased morbidity and mortality. Attaining the recommended glucose levels is challenging with standard insulin therapy. Hypoglycaemia and hyperglycaemia are common and diabetes management in hospital can be a considerable workload burden for health-care professionals. Fully automated insulin delivery (closed-loop) has been shown to be safe, and achieves superior glucose control than standard insulin therapy in the hospital, including in those patients receiving haemodialysis and enteral or parenteral nutrition where glucose control can be particularly challenging. Evidence that the improved glucose control achieved using closed-loop systems can translate into improved clinical outcomes for patients is key to support widespread adoption of this technology. The closed-loop approach has the potential to provide a paradigm shift in the management of inpatient diabetes, particularly in the most challenging inpatient populations, and may reduce staff work burden and the health-care costs associated with inpatient diabetes.


2021 ◽  
pp. 193229682110354
Author(s):  
Melissa-Rosina Pasqua ◽  
Michael A. Tsoukas ◽  
Ahmad Haidar

As closed-loop insulin therapies emerge into clinical practice and evolve in medical research for type 1 diabetes (T1D) treatment, the limitations in these therapies become more evident. These gaps include unachieved target levels of glycated hemoglobin in some patients, postprandial hyperglycemia, the ongoing need for carbohydrate counting, and the lack of non-glycemic benefits (such as prevention of metabolic syndrome and complications). Multiple adjunct therapies have been examined to improve closed-loop systems, yet none have become a staple. Sodium-glucose-linked cotransporter inhibitors (SGLTi’s) have been extensively researched in T1D, with average reductions in placebo-adjusted HbA1c by 0.39%, and total daily dose by approximately 10%. Unfortunately, many trials revealed an increased risk of diabetic ketoacidosis, as high as 5 times the relative risk compared to placebo. This narrative review discusses the proven benefits and risks of SGLTi in patients with T1D with routine therapy, what has been studied thus far in closed-loop therapy in combination with SGLTi, the potential benefits of SGLTi use to closed-loop systems, and what is required going forward to improve the benefit to risk ratio in these insulin systems.


2010 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Lalantha Leelarathna ◽  
Roman Hovorka ◽  
◽  

Automated insulin delivery by means of a glucose-responsive closed-loop system has often been cited as the ‘holy grail’ of type 1 diabetes management. Reflecting the technological advances in interstitial glucose measurements and wider use of continuous glucose monitoring, recent research in closed-loop glucose control has focused on the subcutaneous route for glucose measurements and insulin delivery. The primary aim of such systems is to keep blood glucose within the target range while minimising the risk of hypoglycaemia with minimal input from the user. This article examines recent developments in the field of interstitial glucose measurement, limitations of the current generation of devices and implications on the performance of closed-loop systems. Clinical results and the advantages and disadvantages of different closed-loop configurations are summarised. Potential future advances in closed-loop systems are highlighted.


2010 ◽  
Vol 06 (01) ◽  
pp. 58
Author(s):  
Lalantha Leelarathna ◽  
Roman Hovorka ◽  
◽  

Automated insulin delivery by means of a glucose-responsive closed-loop system has often been cited as the ‘holy grail’ of type 1 diabetes management. Reflecting the technological advances in interstitial glucose measurements and wider use of continuous glucose monitoring, recent research in closed-loop glucose control has focused on the subcutaneous route for glucose measurements and insulin delivery. The primary aim of such systems is to keep blood glucose within the target range while minimizing the risk of hypoglycemia with minimal input from the user. This article examines recent developments in the field of interstitial glucose measurement, limitations of the current generation of devices and implications on the performance of closed-loop systems. Clinical results and the advantages and disadvantages of different closed-loop configurations are summarized. Potential future advances in closed-loop systems are highlighted.


2017 ◽  
Vol 25 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Molly L Tanenbaum ◽  
Esti Iturralde ◽  
Sarah J Hanes ◽  
Sakinah C Suttiratana ◽  
Jodie M Ambrosino ◽  
...  

Automated closed loop systems will greatly change type 1 diabetes management; user trust will be essential for acceptance of this new technology. This qualitative study explored trust in 32 individuals following a hybrid closed loop trial. Participants described how context-, system-, and person-level factors influenced their trust in the system. Participants attempted to override the system when they lacked trust, while trusting the system decreased self-management burdens and decreased stress. Findings highlight considerations for fostering trust in closed loop systems. Systems may be able to engage users by offering varying levels of controls to match trust preferences.


2021 ◽  
Vol 10 (11) ◽  
pp. 2445
Author(s):  
Max L. Eckstein ◽  
Benjamin Weilguni ◽  
Martin Tauschmann ◽  
Rebecca T. Zimmer ◽  
Faisal Aziz ◽  
...  

The aim of this systematic review and meta-analysis was to compare time in range (TIR) (70–180 mg/dL (3.9–10.0 mmol/L)) between fully closed-loop systems (CLS) and standard of care (including hybrid systems) during physical exercise in people with type 1 diabetes (T1D). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Science from January 1950 until January 2020. Randomized controlled trials including studies with different CLS were compared against standard of care in people with T1D. The meta-analysis was performed using the random effects model and restricted maximum likelihood estimation method. Six randomized controlled trials involving 153 participants with T1D of all age groups were included. Due to crossover test designs, studies were included repeatedly (a–d) if CLS or physical exercise interventions were different. Applying this methodology increased the comparisons to a total number of 266 participants. TIR was higher with an absolute mean difference (AMD) of 6.18%, 95% CI: 1.99 to 10.38% in favor of CLS. In a subgroup analysis, the AMD was 9.46%, 95% CI: 2.48% to 16.45% in children and adolescents while the AMD for adults was 1.07% 95% CI: −0.81% to 2.96% in favor of CLS. In this systematic review and meta-analysis CLS moderately improved TIR in comparison to standard of care during physical exercise in people with T1D. This effect was particularly pronounced for children and adolescents showing that the use of CLS improved TIR significantly compared to standard of care.


2021 ◽  
pp. 193229682110354
Author(s):  
Aideen Daly ◽  
Sara Hartnell ◽  
Charlotte K. Boughton ◽  
Mark Evans

Background: Gastroparesis is associated with unpredictable gastric emptying and can lead to erratic glucose profiles and negative impacts on quality-of-life. Many people with gastroparesis are unable to meet glycemic targets and there is a need for new approaches for this population. Hybrid closed-loop systems improve glucose control and quality-of-life but evidence for their use in people with diabetic gastroparesis is limited. Methods: We present a narrative review of the challenges associated with type 1 diabetes management for people with gastroparesis and present a case series of 7 people with type 1 diabetes and gastroparesis. We compare glycemic control before and during the first 12 months of hybrid closed-loop therapy. Data were analyzed using electronic patient records and glucose management platforms. We also discuss future advancements for closed-loop systems that may benefit this population. Results: Five of 7 patients had data available for time in range before and during hybrid closed-loop therapy, and all had an improvement in percentage time in target glucose range, with the overall mean time in range increasing from 26.0% ± 15.7% to 58.4% ± 8.6% during HCL use, ( P = .004). There were significant reductions in HbA1c (83 ± 9 mmol/mol to 71 ± 14 mmol/mol) and mean glucose from 13.0 ± 1.7 mmol/L (234 ± 31 mg/dL) to 10.0 ± 0.7 mmol/L (180 ± 13 mg/dL) with use of a hybrid closed-loop system. Importantly, this was achieved without an increase in time in hypoglycemia ( P = .50). Conclusion: Hybrid closed-loop systems may represent a valuable approach to improve glycemic control for people with type 1 diabetes and gastroparesis. Prospective studies are required to confirm these findings.


Diabetologia ◽  
2021 ◽  
Author(s):  
Charlotte K. Boughton ◽  
Roman Hovorka

AbstractAdvances in diabetes technologies have enabled the development of automated closed-loop insulin delivery systems. Several hybrid closed-loop systems have been commercialised, reflecting rapid transition of this evolving technology from research into clinical practice, where it is gradually transforming the management of type 1 diabetes in children and adults. In this review we consider the supporting evidence in terms of glucose control and quality of life for presently available closed-loop systems and those in development, including dual-hormone closed-loop systems. We also comment on alternative ‘do-it-yourself’ closed-loop systems. We remark on issues associated with clinical adoption of these approaches, including training provision, and consider limitations of presently available closed-loop systems and areas for future enhancements to further improve outcomes and reduce the burden of diabetes management. Graphical abstract


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document