Increased Expression of NDRG3 in Mouse Uterus During Embryo Implantation and in Mouse Endometrial Stromal Cells During In Vitro Decidualization

2017 ◽  
Vol 25 (8) ◽  
pp. 1197-1207 ◽  
Author(s):  
Qian Yang ◽  
Xuan Zhang ◽  
Yan Shi ◽  
Ya-Ping He ◽  
Zhao-Gui Sun ◽  
...  
Reproduction ◽  
2018 ◽  
Author(s):  
Qianrong Qi ◽  
Yifan Yang ◽  
Kailin Wu ◽  
Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization, and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is up-regulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunj. Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings: The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunja Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number not applicable


2017 ◽  
Vol 234 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Jie Liu ◽  
Fei Gao ◽  
Yue-Fang Liu ◽  
Hai-Ting Dou ◽  
Jia-Qi Yan ◽  
...  

Embryo implantation and decidualization are key steps for successful reproduction. Although numerous factors have been identified to be involved in embryo implantation and decidualization, the mechanisms underlying these processes are still unclear. Based on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at implantation site in mouse uterus. However, the expression, regulation and function of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated. Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway. Based on promoter analysis, we also showed that Egr2 is involved in Prss56 regulation by HB-EGF. Collectively, Prss56 expression at implantation site is modulated by HB-EGF/EGFR/ERK signaling pathway and involved in mouse decidualization.


2005 ◽  
Vol 17 (9) ◽  
pp. 109
Author(s):  
E. Dimitriadis ◽  
C. Stoikos ◽  
L. A. Salamonsen

Decidualization of endometrial stromal cells is critical for embryo implantation and establishment of pregnancy. Locally produced cytokines such as interleukin (IL)-11 enhance decidualization of human endometrial stromal cells (HESC). IL-11 signaling is negatively regulated by suppressor of cytokine signaling (SOCS) proteins. IL-11 stimulates SOCS3 in human pituitary cells. The aim of this study was to examine the role of SOCS3 on IL-11 induced HESC decidualization. Decidualization of HESC was assessed using an in vitro model in which estrogen (E)+progesterone (P) or cAMP was administered for 8 days to cells. Medium was collected for prolactin (PRL) assay (a decidual marker). Cellular protein was extracted for Western analysis and cellular RNA for real-time RT-PCR analysis. SOCS3 was overexpressed in HESC cells and the effect on decidualization assessed. HESC treated with E+P or cAMP secreted PRL from day 6. Treatment of HESC with E+P or cAMP increased the abundance of SOCS3 protein, coinciding with an increase in PRL secretion. cAMP maximally stimulated SOCS3 protein and mRNA during decidualization. Antiprogestin (onapristone) added to E+P or cAMP treated cells at day 6 reduced PRL secretion but had no influence on SOCS3 abundance suggesting that SOCS3 protein was not regulated via the P-receptor pathway. Addition of IL-11 to HESC increased SOCS3 abundance from 1 h. SOCS3 abundance returned to control levels following treatment of cells with IL-11 and IL-11 neutralising antibody. SOCS3 overexpression in HESC treated with cAMP reduced PRL secretion compared to mock- or non-transfected HESC. Furthermore, IL-11 mediated decidualization was diminished by SOCS3 overexpression. We have demonstrated for the first time that SOCS3 regulates IL-11 induced decidualization and that SOCS3 overexpression in HESC disrupts decidualization. This knowledge is important in understanding the mechanisms by which IL-11 promotes decidualization of HESC and thus the formation of decidua, an essential component of a functional placenta.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Yaping He ◽  
Zhaogui Sun ◽  
Yan Shi ◽  
Yahong Jiang ◽  
Zhefu Jia ◽  
...  

Immune tolerance at the fetomaternal interface must be established during the processes of implantation and pregnancy. Monoclonal nonspecific suppressor factor beta (MNSFβ) is a secreted protein that possesses antigen-nonspecific immune-suppressive function. It was previously reported that intrauterine immunoneutralization of MNSFβ significantly inhibited embryo implantation in mice. In the present study, MNSFβ protein expression was up- or downregulated by overexpression or RNA interference, respectively, in HCC-94 cells and the culture supernatants used to determine effects of MNSFβ on the secretion of IL-4 and TNFα from mouse lymphocytes as detected by ELISA. A coculture model of mouse embryos and endometrial stromal cells was also utilized to determine the effects of a specific anti-MNSFβ antibody on hatching and growth of embryos in vitro. The results show that MNSFβ induced secretion of IL-4 and inhibited secretion of TNFα from mouse lymphocytes. Following immunoneutralization of MNSFβ protein in the HCC-94 supernatant, the stimulatory effect of MNSFβ on IL-4 secretion from mouse lymphocytes was reduced, while the inhibitory effect on secretion of TNFα was abrogated. Expression of MNSFβ was detected in both embryonic and endometrial stromal cells, and its immunoneutralization inhibited the hatching and spreading of embryos in an in vitro coculture model. These results indicated that MNSFβ may play critical roles during the peri-implantation process by regulating cytokine secretion of lymphocytes and by mediating the crosstalk between embryonic cells and endometrial stromal cells.


Reproduction ◽  
2013 ◽  
Vol 145 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Xue-Chao Tian ◽  
Qu-Yuan Wang ◽  
Dang-Dang Li ◽  
Shou-Tang Wang ◽  
Zhan-Qing Yang ◽  
...  

The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6–8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.


Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1349-1360 ◽  
Author(s):  
Yuechao Zhao ◽  
Sunghee Park ◽  
Milan K. Bagchi ◽  
Robert N. Taylor ◽  
Benita S. Katzenellenbogen

Abstract Successful implantation and maintenance of pregnancy require the transformation of uterine endometrial stromal cells into distinct decidualized cells. Although estrogen and progesterone (P4) receptors are known to be essential for decidualization, the roles of steroid receptor coregulators in this process remain largely unknown. In this study, we have established a key role for the coregulator, repressor of estrogen receptor activity (REA), in the decidualization of human endometrial stromal cells (hESCs) in vitro and of the mouse uterus in vivo. Our studies revealed that the level of REA normally decreases to half as hESC decidualization proceeds and that uterine reduction of REA in transgenic heterozygous knockout mice or small interfering RNA knockdown of REA in hESC temporally accelerated and strongly enhanced the differentiation process, as indicated by changes in cell morphology and increased expression of biomarkers of decidualization, including P4 receptor. Findings in hESC cultured in vitro with estradiol, P4, and 8-bromo-cAMP over a 10-day period mirrored observations of enhanced decidualization response in transgenic mice with heterozygous deletion of REA. Importantly, gene expression and immunohistochemical analyses revealed changes in multiple components of the Janus kinase/signal transducer and activator of transcription pathway, including marked up-regulation of signal transducer and activator of transcription 3 and IL-11, master regulators of decidualization, and the down-regulation of several suppressor of cytokine signaling family members, upon reduction of REA. The findings highlight that REA physiologically restrains endometrial stromal cell decidualization, controlling the timing and magnitude of decidualization to enable proper coordination of uterine differentiation with concurrent embryo development that is essential for implantation and optimal fertility.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4734-4743 ◽  
Author(s):  
Kun Qian ◽  
Linli Hu ◽  
Hong Chen ◽  
Haixia Li ◽  
Na Liu ◽  
...  

Abstract Decidualization is a critical step during embryo implantation and characterized by the differentiation of endometrial stromal cells (ESCs) into decidual cells. Because miRNAs are important determinants of cellular fate specification, in this study, the miRNA expression in ESCs during in vitro decidualization was profiled by using a microarray. Significance analysis of microarrays revealed that 49 miRNA genes were differently (>2-fold) expressed between the noninduced ESCs and induced ESCs with a false discovery rate of 0. The expression variance of hsa-miR-222, 221, 143, 101, 30d, 30c, 181b, 27b, 29b, 507, and 23a was validated by using quantitative PCR (P < 0.05). Based on microRNA (miRNA) and mRNA expression variance and predicted target genes of miRNAs, a bioinformatic model of miRNAs controlling ESCs differentiation was formulated. Finally, we proved that down-regulation of has-miR-222 could decrease the number of cells in S phase during ESCs differentiation (P < 0.05). Antisense oligonucleotides of has-miR-222 could increase reporter gene expression by targeting the 3′ untranslated regions of CDKN1C/p57kip2 mRNAs as well as increase CDKN1C/p57kip2 protein levels (P < 0.05). In conclusion, our results suggest that a subset of miRNAs play a key role in gene reprogramming during ESCs decidualization and that hsa-miR-222 participates in ESC differentiation by regulating ESCs terminally withdrawing from the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document