In vitro facilitation of early embryo implantation using three-dimensional tissue-engineered constructs fabricated by human endometrial stromal cells

Author(s):  
Jeonghyun Kim ◽  
Yasushi Hirota ◽  
Takehiro Hiraoka ◽  
Osamu Yoshino ◽  
Shigeru Saito ◽  
...  
2020 ◽  
Author(s):  
Shuo Han ◽  
Minghui Liu ◽  
Shan Liu ◽  
Yuan Li

Abstract BackgroundSuccessful embryo implantation is an essential prerequisite for pregnancy. Previous studies have shown that DNA methylation, histone, chromatin structure, and non-coding RNAs, microRNAs may participate in the regulation of gene expression during embryo implantation. However, the transcriptome changes of human endometrial stromal cells during early embryo implantation are not well characterized. MethodsWe cultured human endometrial stromal cells and simulated the process of embryo implantation in vitro. We further analyzed the endometrial transcriptome patterns of endometrial stromal cells in the pre-implantation and post-implantation phase. We identified comprehensive transcriptomic profile of two endometrium stromal cells in particular developmental stage that may reflect the potential mechanism of embryo implantation. ResultsA total of 592 differentially expressed genes were identified after embryo implantation. Additionally, we identified key pathways (including TP53 and EGF signal pathway) that may regulate embryo-endometrium interactions; our findings may serve as a foundation for targeted studies on endometrial receptivity and embryo implantation loss. ConclusionOur work showed the transcriptome changes of endometrial stromal cells within 48 hours after implantation which provides key insights into the crucial features of transcriptional regulation in the stepwise embryo development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunj. Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings: The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunja Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number not applicable


2005 ◽  
Vol 17 (9) ◽  
pp. 109
Author(s):  
E. Dimitriadis ◽  
C. Stoikos ◽  
L. A. Salamonsen

Decidualization of endometrial stromal cells is critical for embryo implantation and establishment of pregnancy. Locally produced cytokines such as interleukin (IL)-11 enhance decidualization of human endometrial stromal cells (HESC). IL-11 signaling is negatively regulated by suppressor of cytokine signaling (SOCS) proteins. IL-11 stimulates SOCS3 in human pituitary cells. The aim of this study was to examine the role of SOCS3 on IL-11 induced HESC decidualization. Decidualization of HESC was assessed using an in vitro model in which estrogen (E)+progesterone (P) or cAMP was administered for 8 days to cells. Medium was collected for prolactin (PRL) assay (a decidual marker). Cellular protein was extracted for Western analysis and cellular RNA for real-time RT-PCR analysis. SOCS3 was overexpressed in HESC cells and the effect on decidualization assessed. HESC treated with E+P or cAMP secreted PRL from day 6. Treatment of HESC with E+P or cAMP increased the abundance of SOCS3 protein, coinciding with an increase in PRL secretion. cAMP maximally stimulated SOCS3 protein and mRNA during decidualization. Antiprogestin (onapristone) added to E+P or cAMP treated cells at day 6 reduced PRL secretion but had no influence on SOCS3 abundance suggesting that SOCS3 protein was not regulated via the P-receptor pathway. Addition of IL-11 to HESC increased SOCS3 abundance from 1 h. SOCS3 abundance returned to control levels following treatment of cells with IL-11 and IL-11 neutralising antibody. SOCS3 overexpression in HESC treated with cAMP reduced PRL secretion compared to mock- or non-transfected HESC. Furthermore, IL-11 mediated decidualization was diminished by SOCS3 overexpression. We have demonstrated for the first time that SOCS3 regulates IL-11 induced decidualization and that SOCS3 overexpression in HESC disrupts decidualization. This knowledge is important in understanding the mechanisms by which IL-11 promotes decidualization of HESC and thus the formation of decidua, an essential component of a functional placenta.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Yaping He ◽  
Zhaogui Sun ◽  
Yan Shi ◽  
Yahong Jiang ◽  
Zhefu Jia ◽  
...  

Immune tolerance at the fetomaternal interface must be established during the processes of implantation and pregnancy. Monoclonal nonspecific suppressor factor beta (MNSFβ) is a secreted protein that possesses antigen-nonspecific immune-suppressive function. It was previously reported that intrauterine immunoneutralization of MNSFβ significantly inhibited embryo implantation in mice. In the present study, MNSFβ protein expression was up- or downregulated by overexpression or RNA interference, respectively, in HCC-94 cells and the culture supernatants used to determine effects of MNSFβ on the secretion of IL-4 and TNFα from mouse lymphocytes as detected by ELISA. A coculture model of mouse embryos and endometrial stromal cells was also utilized to determine the effects of a specific anti-MNSFβ antibody on hatching and growth of embryos in vitro. The results show that MNSFβ induced secretion of IL-4 and inhibited secretion of TNFα from mouse lymphocytes. Following immunoneutralization of MNSFβ protein in the HCC-94 supernatant, the stimulatory effect of MNSFβ on IL-4 secretion from mouse lymphocytes was reduced, while the inhibitory effect on secretion of TNFα was abrogated. Expression of MNSFβ was detected in both embryonic and endometrial stromal cells, and its immunoneutralization inhibited the hatching and spreading of embryos in an in vitro coculture model. These results indicated that MNSFβ may play critical roles during the peri-implantation process by regulating cytokine secretion of lymphocytes and by mediating the crosstalk between embryonic cells and endometrial stromal cells.


2017 ◽  
Vol 25 (8) ◽  
pp. 1197-1207 ◽  
Author(s):  
Qian Yang ◽  
Xuan Zhang ◽  
Yan Shi ◽  
Ya-Ping He ◽  
Zhao-Gui Sun ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4734-4743 ◽  
Author(s):  
Kun Qian ◽  
Linli Hu ◽  
Hong Chen ◽  
Haixia Li ◽  
Na Liu ◽  
...  

Abstract Decidualization is a critical step during embryo implantation and characterized by the differentiation of endometrial stromal cells (ESCs) into decidual cells. Because miRNAs are important determinants of cellular fate specification, in this study, the miRNA expression in ESCs during in vitro decidualization was profiled by using a microarray. Significance analysis of microarrays revealed that 49 miRNA genes were differently (>2-fold) expressed between the noninduced ESCs and induced ESCs with a false discovery rate of 0. The expression variance of hsa-miR-222, 221, 143, 101, 30d, 30c, 181b, 27b, 29b, 507, and 23a was validated by using quantitative PCR (P < 0.05). Based on microRNA (miRNA) and mRNA expression variance and predicted target genes of miRNAs, a bioinformatic model of miRNAs controlling ESCs differentiation was formulated. Finally, we proved that down-regulation of has-miR-222 could decrease the number of cells in S phase during ESCs differentiation (P < 0.05). Antisense oligonucleotides of has-miR-222 could increase reporter gene expression by targeting the 3′ untranslated regions of CDKN1C/p57kip2 mRNAs as well as increase CDKN1C/p57kip2 protein levels (P < 0.05). In conclusion, our results suggest that a subset of miRNAs play a key role in gene reprogramming during ESCs decidualization and that hsa-miR-222 participates in ESC differentiation by regulating ESCs terminally withdrawing from the cell cycle.


2021 ◽  
Author(s):  
Ryan M Brown ◽  
Linda Wang ◽  
Anqi Fu ◽  
Athilakshmi Kannan ◽  
Michael Mussar ◽  
...  

Spontaneous abortions have been reported to affect up to 43% of parous women, with over 20% occurring before pregnancy is clinically diagnosed. Establishment of pregnancy is critically dependent on proper embryo-uterine interactions at the time of implantation. Besides oocyte abnormalities, implantation failure is a major contributor to early pregnancy loss. Previously, we demonstrated that two members of the Iroquois homeobox transcription factor family, IRX3 and IRX5, exhibited distinct and dynamic expression profiles in the developing ovary to promote oocyte and follicle survival. Elimination of each gene independently caused subfertility, but with different breeding pattern outcomes. Irx3 KO (Irx3LacZ/LacZ) females produced fewer pups throughout their reproductive lifespan which could only be partially explained by poor oocyte quality. Thus, we hypothesized that IRX3 is also expressed in the uterus where it acts to establish functional embryo-uterine interactions to support pregnancy. To test this hypothesis, we harvested pregnant uteri from control and Irx3 KO females to evaluate IRX3 expression profiles and the integrity of embryo implantation sites. Our results indicate that IRX3 is expressed in the endometrial stromal cells of the pregnant uterus. Notably, of the days evaluated, IRX3 expression expanded into the endometrial stroma starting at day 4 of pregnancy (D4) with peak expression at D5-6, and then greatly diminished by D7. This pattern corresponds to the critical window for implantation and remodeling of the vasculature network in mice. Further, histology and immunohistochemistry at D7 showed that while embryos were able to attach to the uterus, implantation sites in Irx3 KO pregnant mice exhibited impaired vascularization. In addition, our results showed significantly diminished expression of decidualization markers and disruptions in GJA1 organization in the decidual bed. These data, taken together with previous reports focused on the ovary, suggest that IRX3 promotes fertility via at least two different mechanisms: 1) promoting competent oocytes and 2) facilitating functional embryo-uterine interactions during implantation. Future research aims to tease apart the roles for IRX3 in the oocyte versus the uterus and the mechanisms by which it promotes early embryo survival and a successful pregnancy outcome.


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 673-684
Author(s):  
Marcia Riboldi ◽  
Ivonne Nazir ◽  
Belén Jara ◽  
Felipe Argandoña ◽  
Cecilia Valencia ◽  
...  

During embryo implantation, endometrial angiogenesis is regulated by signals originating from the endometrium itself and the developing embryo. It has been suggested that hCG may play a pro-angiogenic role; therefore, we sought to understand its regulatory role in blood vessel formation in human endometrium using in vivo and in vitro models. In the in vivo model, we screened 16 angiogenesis-related transcripts in the endometrium upon intrauterine administration of hCG. Oocyte donors were recruited and during their controlled ovarian stimulation cycle received a single dose of hCG or vehicle on the day of oocyte pick up during a cycle of ovarian stimulation. One hour before obtaining an endometrial sample, women received an intrauterine administration of vehicle or hCG (500, 1500 and 5000 IU). Transcript and protein analysis showed that MMP3 and VEGFA increased, whereas TIMP1 decreased. The in vitro analysis studied the angiogenic potential of conditioned medium (CM) from primary cultures of human endometrial stromal cells (ESC) stimulated with hCG. Using a 2D and 3D in vitro angiogenesis assays, our results indicate that CM from ESC almost completely inhibits the capillary-like structure formation in endothelial cells, overriding the pro-angiogenic effect of hCG; and this inhibition due to secreted factors present in CM specifically reduced the migration potential of endothelial cells. In conclusion, the endometrial stromal milieu seems to modulate the direct pro-angiogenic effects of hCG on endothelial cells during embryo implantation.


Sign in / Sign up

Export Citation Format

Share Document