scholarly journals Antimicrobial Activity and Chemical Composition of Essential Oil of Eupatorium Glutinosum (Lam.)

2006 ◽  
Vol 1 (8) ◽  
pp. 1934578X0600100
Author(s):  
Hesham R. El-Seedi

The essential oil obtained by steam distillation from the leaves and twigs of Eupatorium glutinosum Lam. (Asteraceae) showed antimicrobial activities against a Gram-positive bacterium, three Gram–negative bacteria and three fungi. The results from this study support the vernacular medicinal uses of the plant in folkloric medicine. The chemical composition of the essential oil was analysed by GC and GC-MS, resulting in the identification of 24 constituents accounting for 92.6% of the total mass. The major active component, carvacrol, was isolated using MPLC and characterized by NMR and MS analysis. β-Glucosidase-treatment of the aqueous plant residue yielded a volatile fraction that did not show antimicrobial activitiy, in which the major components were octen-3-ol and (Z)-hex-2-en-1-ol. The essential oil from the species is reported for the first time.

Author(s):  
Rini Yanti ◽  
Hermina Nurdiawati ◽  
Puji Wulandari ◽  
Yudi Pranoto ◽  
Muhammad Nur Cahyanto

Turmeric rhizomes are commonly used in the culinary, pharmaceutical, herbal medicine, and beverage industries. On the contrary, turmeric leaves are underutilized.  The aims of this study were to extract the essential oil from turmeric leaves, characterize the chemical composition of the oil, and determine its antifungal activities against aflatoxin-producing fungi. Steam distillation was used to extract the essential oil from turmeric leaves. The properties of the oil were identified using GC-MS. Antimicrobial activities against Aspergillus flavus and Aspergillus parasiticus were determined. Spores of the fungi were inoculated into potato dextrose agar plates supplemented with various quantities of turmeric leaves essential oil and incubated at 30°C for 7 days. The oil's primary constituents were α-phelandrene(46.70 %), followed by α-terpinolene (17.39 %), 1,8-cineole (8.78 %), benzene (4.24 %), and 2-β pinene (3.64 %). At low (<1%) concentrations, the oil delayed mycelia formation and at high concentrations it significantly inhibit fungal growth (at 1%) and completely inhibit colony formation (at 2%) Additionally, the result show that turmeric leaves oil can inhibited fungus growth at the lowest concentration (0.25 %) when compared to the control over a seven-day incubation period.


2021 ◽  
Vol 16 (4) ◽  
pp. 1934578X2110076
Author(s):  
Francesco Saverio Robustelli della Cuna ◽  
Annalisa Giovannini ◽  
Luca Braglia ◽  
Cristina Sottani ◽  
Elena Grignani ◽  
...  

The chemical composition of the essential oils of Passiflora sexocellata and Passiflora trifasciata (Passifloraceae, subgenus Decaloba) were studied for the first time. Essential oils were obtained by steam distillation of fresh leaves and flowers. The chemical composition was assessed by using GC/FID and GC/MS. For P. sexocellata leaves, the optimized analytical procedure allowed the identification of 33 compounds (75% of the total oil composition) and 29 (74% of the total oil composition) in flowers. Regarding P. trifasciata, 35 compounds (76% of the total oil composition) were detected in leaves and 32 (71% of the total oil composition) in flowers. Terpenes and mono unsaturated hydrocarbons were quantified as major constituents of the volatile fraction in flowers (17.0 to 52.6%) and (13.7 to 20.0%). Organic acids were detected in both leaves and flowers with a percentage ranging from 3.3% to 32.0%. Aldehydes were also detected in leaves (12.6 to 41.4%) and in flowers (1.4 to 5.1%). The GC/MS analyzes allowed alcohols to be detected in leaves (20.6 to 42.9%) and in flowers (8.2 to 18.1%). These compounds represent the most important feature of the large Passiflora family. Moreover, a critical role in the coevolved mechanisms of pollinators' interaction has been investigated.


2020 ◽  
Vol 49 (1) ◽  
pp. 91-96
Author(s):  
Omer Elkiran ◽  
Cumhur Avşar

The chemical composition, antimicrobial and antioxidant properties of the essential oil (EO), obtained from the leaves of Vaccinium myrtillus naturally grown in the northernmost of Turkey were determined by GC and GC-MS and chemical differences were discussed with the help of chemotaxonomy. The leaves of the plant samples were hydro-distilled to produce oil in the yields of 1%. Nineteen components were identified representing 96.4% of the oil. The main compounds in the EO of V. myrtillus were; 1,8-cineole (38.6%), α- pinene (21%), linalool (19.5%), α-terpineol (5.8%). The EO extract was screened for their antimicrobial activities against the 9 bacteria and 3 yeast species by using disc-diffusion and MIC procedure. The EO extract displayed more effective against all the tested bacteria (especially, S. aureus ATCC 6538 and MRSA) and yeast (only C. krusei). The MIC values of sample against tested microorganisms were found to be in the range of 320 to ≥1280 μg/ml. The most effective MIC values were observed against the S. aureus and MRSA (320 μg/ml). In vitro the antioxidant activity based on the 1,1-diphenly-2-picrylhydrazyl (DPPH) free radical was evaluated for the EO extract, and it was found that the extract had good antioxidant activity in the range of the IC50 = 583.4 ±11 μg ml. Antibacterial and antioxidant activities of the EO from the leaves of V. myrtillus has been reported for the first time.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


BioResources ◽  
2007 ◽  
Vol 2 (2) ◽  
pp. 265-269 ◽  
Author(s):  
M. Hakki Alma ◽  
Murat Ertaş ◽  
Siegfrie Nitz ◽  
Hubert Kollmannsberger

In this study, clove bud oil, which was cultivated in the Mediterranean region of Turkey, was provided from a private essential oil company in Turkey. Essential oil from clove (Syzygium aromaticum L.) was obtained from steam-distillation method, and its chemical composition was analyzed by GC and GC-MS. The results showed that the essential oils mainly contained about 87.00% eugenol, 8.01% eugenyl acetate and 3.56% β-Caryophyllene. The chemical composition of the Turkish clove bud oil was comparable to those of trees naturally grown in their native regions.


2013 ◽  
Vol 62 (12) ◽  
pp. 973-980 ◽  
Author(s):  
Anis Ben Hsouna ◽  
Nihed Ben Halima ◽  
Slim Abdelkafi ◽  
Naceur Hamdi

2018 ◽  
Vol 73 (7-8) ◽  
pp. 313-318 ◽  
Author(s):  
Rose Vanessa Bandeira Reidel ◽  
Simona Nardoni ◽  
Francesca Mancianti ◽  
Claudia Anedda ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Abstract The objective of the present paper was the assessment of the chemical composition of the essential oils from four Asteraceae species with a considerable food, medicinal, and agricultural value, collected in Egypt, together with their in vitro inhibitory activity against molds and yeasts. The essential oil of Launaea cornuta flowers was also evaluated for the first time, but because of its very low yield (<0.01%), no antifungal test was performed.


2018 ◽  
Vol 121 ◽  
pp. 405-410 ◽  
Author(s):  
Rachid Ait Babahmad ◽  
Abdellah Aghraz ◽  
Aziz Boutafda ◽  
Eleni G. Papazoglou ◽  
Petros A. Tarantilis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document