scholarly journals Cinnamoylphenethylamine 1H-NMR Chemical Shifts: A Concise Reference for Ubiquitous Compounds

2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Hans A. Pedersen ◽  
Stine K. Steffensen ◽  
Carsten Christophersen

1H-NMR data of 25 cinnamoylphenethylamine derivates were recorded and compared in order to assign signals unequivocally without additional spectroscopic data. The spectra provide a key for the rapid identification of these ubiquitous natural products. The compounds isomerize rapidly in UV light, producing a characteristic upfield shift of the olefinic protons consistent with distorted planarity of the Cis cinnamate, and this requires special attention during preparative work.

Author(s):  
Sana Fatima ◽  
Panayiotis C Varras ◽  
Atia-tul Wahab ◽  
Muhammad I Choudhary ◽  
Michael Siskos ◽  
...  

NMR and DFT studies of phenol containing natural products as molecular sensors were carried out to investigate H2O/DMSO eutectic mixtures at a molecular level. The 1H NMR chemical shifts of...


2020 ◽  
Vol 22 (9) ◽  
pp. 4884-4895 ◽  
Author(s):  
Shengmin Zhou ◽  
Lu Wang

Electronic and nuclear quantum effects determine the symmetry and highly downfield 1H NMR chemical shifts of short hydrogen bonds.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2290 ◽  
Author(s):  
Saima H. Mari ◽  
Panayiotis C. Varras ◽  
Atia-tul-Wahab ◽  
Iqbal M. Choudhary ◽  
Michael G. Siskos ◽  
...  

Detailed solvent and temperature effects on the experimental 1H-NMR chemical shifts of the natural products chrysophanol (1), emodin (2), and physcion (3) are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.1 ppb/K were observed in DMSO-d6, acetone-d6 and CDCl3 for the C(1)–OH and C(8)–OH groups which demonstrate that they are involved in a strong intramolecular hydrogen bond. On the contrary, large chemical shift differences of 5.23 ppm at 298 K and Δδ/ΔΤ values in the range of −5.3 to −19.1 ppb/K between DMSO-d6 and CDCl3 were observed for the C(3)–OH group which demonstrate that the solvation state of the hydroxyl proton is a key factor in determining the value of the chemical shift. DFT calculated 1H-NMR chemical shifts, using various functionals and basis sets, the conductor-like polarizable continuum model, and discrete solute-solvent hydrogen bond interactions, were found to be in very good agreement with the experimental 1H-NMR chemical shifts even with computationally less demanding level of theory. The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis. When the X-ray structures of chrysophanol (1), emodin (2), and physcion (3) were used as input geometries, the DFT-calculated 1H-NMR chemical shifts were shown to strongly deviate from the experimental chemical shifts and no functional dependence could be obtained. Comparison of the most important intramolecular data of the DFT calculated and the X-ray structures demonstrate significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond O–H and C–H bond lengths which deviate by 0.152 tο 0.132 Å and 0.133 to 0.100 Å, respectively, in the two structural methods. Further differences were observed in the conformation of –OH, –CH3, and –OCH3 substituents.


1987 ◽  
Vol 52 (10) ◽  
pp. 2474-2481 ◽  
Author(s):  
Josef Jirman ◽  
Antonín Lyčka

A series of 1-acylated and 1,3-diacylated (acyl = acetyl or benzoyl) ureas and thioureas have been prepared and their proton-coupled and proton-decoupled 15N, 13C, and 1H NMR spectra have been measured. All the signals have been assigned. The 15N NMR chemical shifts in 1-acylated ureas and thioureas are shifted downfield as compared with δ(15N) of urea and thiourea, resp. This shift is greater for N-1 than for N-3 nitrogen atoms in both the series. When comparing acylureas and acylthioureas it is obvious from the Δδ(15N) differences that the CS group is better than CO group in transferring the electron-acceptor effect of acyl group. The proton-coupled 15N NMR spectra of the acylureas dissolved in hexadeuteriodimethyl sulphoxide exhibit a doublet of NH group and a triplet of NH2 group at 25 °C. At the same conditions the acylthioureas exhibit a doublet of NH group, the NH2 group signal being split into a doublet of doublets with different coupling constants 1J(15N, H). The greater one of these coupling constants is due to the s-trans proton with respect to the sulfur atom of the thiourea.


1987 ◽  
Vol 52 (2) ◽  
pp. 453-475 ◽  
Author(s):  
Miloš Buděšínský ◽  
David Šaman

Characteristic 1H NMR parameters of 88 acyl groups, hitherto found as ester substituents in natural sesquiterpenic lactones, were determined from the measured spectra as well as literature data. Characteristic 13C NMR chemical shifts for 45 acyl groups were obtained in the same way; for the remaining acyls with hitherto unknown 13C NMR data the values were calculated on the basis of semiempirical relationships.


RSC Advances ◽  
2018 ◽  
Vol 8 (50) ◽  
pp. 28604-28612 ◽  
Author(s):  
Juanfang Wang ◽  
Ying Liu ◽  
Wen Li ◽  
Guanjun Gao

Using an RRS method to calculate the 1H NMR chemical shifts of ionic liquid agreed well with the experimental value.


Author(s):  
Abril C. Castro ◽  
David Balcells ◽  
Michal Repisky ◽  
Trygve Helgaker ◽  
Michele Cascella

1999 ◽  
Vol 23 (1) ◽  
pp. 48-49
Author(s):  
Martín A. Iglesias Arteaga ◽  
Carlos S. Pérez Martinez ◽  
Roxana Pérez Gil ◽  
Francisco Coll Manchado

The assignment of 13C and 1H NMR signals of synthetic (25 R)-5α-spirostanes is presented; the main effects on chemical shifts due to substitution at C-23 are briefly discussed.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1646 ◽  
Author(s):  
Ilia Ponomarev ◽  
Peter Kroll

We investigate 29Si nuclear magnetic resonance (NMR) chemical shifts, δiso, of silicon nitride. Our goal is to relate the local structure to the NMR signal and, thus, provide the means to extract more information from the experimental 29Si NMR spectra in this family of compounds. We apply structural modeling and the gauge-included projector augmented wave (GIPAW) method within density functional theory (DFT) calculations. Our models comprise known and hypothetical crystalline Si3N4, as well as amorphous Si3N4 structures. We find good agreement with available experimental 29Si NMR data for tetrahedral Si[4] and octahedral Si[6] in crystalline Si3N4, predict the chemical shift of a trigonal-bipyramidal Si[5] to be about −120 ppm, and quantify the impact of Si-N bond lengths on 29Si δiso. We show through computations that experimental 29Si NMR data indicates that silicon dicarbodiimide, Si(NCN)2 exhibits bent Si-N-C units with angles of about 143° in its structure. A detailed investigation of amorphous silicon nitride shows that an observed peak asymmetry relates to the proximity of a fifth N neighbor in non-bonding distance between 2.5 and 2.8 Å to Si. We reveal the impact of both Si-N(H)-Si bond angle and Si-N bond length on 29Si δiso in hydrogenated silicon nitride structure, silicon diimide Si(NH)2.


Sign in / Sign up

Export Citation Format

Share Document