scholarly journals In vivo Antiplasmodial and Toxicological Effects of Goniothalamus lanceolatus Crude Extracts

2017 ◽  
Vol 12 (8) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Rozaini Mohd Zohdi ◽  
Shahida Muhamad Mukhtar ◽  
Nur Vicky Bihud ◽  
Nurulfazlina Edayah Rasol ◽  
Fasihuddin Badruddin Ahmad ◽  
...  

This study is aimed at investigating the antiplasmodial activity and acute toxicity of the methanol (MeOH) extracts of the leaves and roots, and the dichloromethane (DCM) extracts of the stem bark, leaves, and roots of Goniothalamus lanceolatus. Phytochemical analysis was then carried out on the most active extract. In vivo antiplasmodial activity was assessed using the 4-day suppressive test against Plasmodium berghei ANKA (PbANKA) in mice. The plant extracts were administered intraperitoneally (i.p.) as a single dose (30 mg/kg) starting 4 h after infection. At a dose level of 30 mg/kg (i.p.), the DCM extracts of the stem bark and leaves, and the MeOH root extracts, prolonged the survival period of infected mice compared to that of the negative control. In addition, all crude extracts, except for the DCM root extract, exhibited parasitemia suppressive activity. The highest level of parasitemia suppression was recorded in mice treated with the DCM stem bark extract at 66.3%. No mortality was observed in mice treated with the DCM extracts of the stem bark and leaves, and the MeOH extract of the leaves, indicating that the LD50 is greater than 300 mg/kg. On the other hand, both the MeOH and DCM extracts of the roots showed toxic effects at a dose of 300 mg/kg (i.p) with an 83.3% mortality rate. The results obtained indicate that the stem bark of G. lanceolatus (DCM crude extract) possesses good antiplasmodial activity against PbANKA infected mice without causing acute toxicity. Five known styrylpyrone derivatives namely goniodiol 1, 8-epi-9-deoxygoniopypyrone 2, 9-deoxygoniopypyrone 3, digoniodiol 4 and goniothalamin 5 have been isolated from the bark of Goniothalamus lanceolatus (DCM crude extract). The structures and stereochemistry of all compounds were elucidated by interpretation of spectroscopic data. This study provides a scientific basis to support the traditional use of the plant as a remedy for malaria.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mariscal Brice Tchatat Tali ◽  
Cedric Derick Jiatsa Mbouna ◽  
Lauve Rachel Yamthe Tchokouaha ◽  
Patrick Valere Tsouh Fokou ◽  
Jaures Marius Tsakem Nangap ◽  
...  

Background. Terminalia mantaly is used in Cameroon traditional medicine to treat malaria and related symptoms. However, its antiplasmodial efficacy is still to be established. Objectives. The present study is aimed at evaluating the in vitro and in vivo antiplasmodial activity and the oral acute toxicity of the Terminalia mantaly extracts. Materials and Methods. Extracts were prepared from leaves and stem bark of T. mantaly, by maceration in distilled water, methanol, ethanol, dichloromethane (DCM), and hexane. All extracts were initially screened in vitro against the chloroquine-resistant strain W2 of P. falciparum to confirm its in vitro activity, and the most potent one was assessed in malaria mouse model at three concentrations (100, 200, and 400 mg/kg/bw). Biochemical, hematological, and histological parameters were also determined. Results. Overall, 7 extracts showed in vitro antiplasmodial activity with IC50 ranging from 0.809 μg/mL to 5.886 μg/mL. The aqueous extract from the stem bark of T. mantaly (Tmsbw) was the most potent (IC50=0.809 μg/mL) and was further assessed for acute toxicity and efficacy in Plasmodium berghei-infected mice. Tmsbw was safe in mice with a median lethal dose (LD50) higher than 2000 mg/kg of body weight. It also exerted a good antimalarial efficacy in vivo with ED50 of 69.50 mg/kg and had no significant effect on biochemical, hematological, and histological parameters. Conclusion. The results suggest that the stem bark extract of T. mantaly possesses antimalarial activity.


Author(s):  
Sulaiman S. Rukayyah ◽  
Jigam, Audu Ali ◽  
Abubakar Abdulkadir ◽  
Salau, Rasaq Bolakale

Malaria is a global problem, as treatment failure has hampered the efficacy of most anti-malarial medications. The goal of this study was to see if stem bark extract from Zanthoxylum zanthoxyloides had antiplasmodial properties that could be used to treat both susceptible and resistant parasites. The stem bark of Z. zanthoxyloides (500g) was crushed and extracted with ethanol. The extract was tested for antiplasmodial activity in vitro against the chloroquine-sensitive (CQS) strain NF54 and chloroquine-resistant strains (CQR) K1 of P. falciparum, as well as in vivo against the CQS(NK65) strain of P. berghei at 100, 200, and 400 mg/kg bw. Bioassay-guided fractionation of the extract was performed. The crude extract had an in vitro activity of 1076.4 56.4 and 1315.1 121.6 ng/ml against chloroquine sensitive and resistant parasites, respectively while standard drugs (chloroquine and artesunate) were 10.94 nM (3478.92 ng/ml) and 9.24 nM (3215.52ng/ml) for CQS and 310.68 nM (98796 ng/ml) and 10.94 nM (3650.52 ng/ml) for CQR respectively. At Day 7, mice treated with 100, 200, and 400 mg/kg bw crude extract had parasite densities of 1159, 928, and 869 parasites/ µl, respectively (compared to positive control that had 123 parasites /µl). In vitro antiplasmodial activity was best in the K2, K4, and K6 fractions (IC50 were 6670, 6890, and 6480 ng/ml), but in vivo antiplasmodial activity was best in the K4 fraction (1183 parasites/ µl).The stem bark extract of Z. zanthoxyloides have remarkable antiplasmodial activity against both chloroquine sensitive and drug resistant P. falciparum supporting it ethnomedicinal use in malaria treatment.The extract of Z. zanthoxyloides has promising antiplasmodial activity and could be used to generate therapeutic leads against the multidrug-resistant K1 strain of P. falciparum, in addition to providing an alternative allopathic antiplasmodial medication.


Author(s):  
Kodi Philip ◽  
Peter Kiplagat Cheplogoi ◽  
Mwangi Muthoni Elizabeth ◽  
M. Akala Hoseah ◽  
Moses K. Langat

Aims: The medicinal plant Oncoba spinosa is used by the local communities in Butebo County in Eastern Uganda for treatment of malaria and other diseases. In vitro antiplasmodial activities of the crude extracts and isolated compounds were screened against chloroquine sensitive 3D7 and resistant Dd2 strains. In vivo acute toxicity of the extracts and structure elucidation were also determined in the study. Experimental: Crude extracts of: n-hexane, dichloromethane, ethyl acetate and methanol were prepared. Isolation and purification of these extracts were done using chromatographic techniques which consisted of column and thin layer chromatography. The structures were elucidated on the basis of spectroscopic evidence. In vitro antiplasmodial activity was performed on chloroquine sensitive 3D7 and resistant Dd2 strains of Plasmodium falciparum using SYBR Green 1 assay technique. Lorke’s method of acute toxicity was used to determine the in vivo acute toxicity of the crude extracts in mice. Results: The root ethyl acetate crude extract had highest antiplasmodial activity of IC50:4.69 ± 0.01 µg/mL and 3.52 ± 0.02 µg/mL against 3D7 and Dd2 strains respectively while the remaining three were inactive against both strains of Plasmodium. Isolation resulted in the identification of three known compounds which included: β-sitosterol, benzoic acid and chaulmoogric acid. Among the tested compounds β-sitosterol showed the highest activity of IC50 3D7: 5.51 µM. Dichloromethane and hexane extracts were non-toxic with LD50 > 5000 mg/kg while the EtOAc and MeOH extracts were slightly toxic with LD50 of 547.72 mg/kg. Statistically significance existed between the antiplasmodial activity of the crude extracts and compounds when compared with the controls at (p < 0.05). Extracts and compounds exerted a significant (P < 0.05) decrease in antiplasmodial activity compared to the positive controls. Conclusion: The findings confirm the ethnobotanical use of O. spinosa by the local communities in Butebo County for the treatment of malaria. The results also suggest that the crude extract of this plant is safe and possesses antimalarial activity which can be used as a basis for in vivo and clinical studies to be done. Therefore the plant can offer a potential drug lead for developing a safe, effective and affordable antimalarial.


2020 ◽  
Vol 4 (2) ◽  
pp. 605-614
Author(s):  
Murtala M. Namadina ◽  
H. Haruna ◽  
U. Sanusi

Most of biochemical reactions in the body generates Reactive Oxygen Species (ROS), which are involved in the pathogenesis of oxidative stress-related disorders like diabetes, nephrotoxicity, cancer, cardiovascular disorders, inflammation and neurological disorders when they attack biochemical molecules like proteins, lipids and nucleic acid. Antioxidants are used to protect the cells or tissues against potential attack by ROS. Most medicinal plants possess a rich source of antioxidants such as flavonoids, phenols, tannins, alkaloids among others. These phytochemicals are currently pursued as an alternative and complimentary drug. In this study, phytochemical components, antioxidant and acute toxicity study of the methanol extract of stem bark and root of F. sycomorus were carried out using standard methods. Findings from this study revealed the presence of some diagnostic microscopical features such as calcium oxalate, starch, gum/mucilage, lignin, Aleurone grain, suberized/Cuticular cell wall and inulin but calcium carbonate was absent in stem bark but present in the powdered root. Quantitative physical constants include moisture contents (6.40% and 7.82%), ash value (7.20% and 9.30 %) in stem bark and root respectively. Carbohydrates, alkaloid, flavonoids, saponins, tannins, glycoside, steroid, triterpenes and phenols were present in all the extracts. They were found to exhibit potent 1,1,-diphenyl 2-picryl hydrazyl (DPPH) free scavenging activity. The DPPH radical scavenging ability of the extracts showed the following trend Ascorbic acid < stem bark extract˃ root extract. The LD50 of the methanolic stem bark and root extracts were found to be greater than 5000 mg /kg and is considered safe for use. Nonetheless, further


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Leslie B. Essel ◽  
David D. Obiri ◽  
Newman Osafo ◽  
Aaron O. Antwi ◽  
Babatunde M. Duduyemi

We investigated the antioxidant and anti-inflammatory effects of a 70% v/v ethanol extract of the stem bark of Antrocaryon micraster on murine models of carrageenan-induced pleurisy and paw oedema. Rat pleural fluid was analysed for volume, protein content, and leucocytes, while lung histology was assessed for damage. Lung tissue homogenates were assayed for glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and myeloperoxidase (MPO). Phytochemical analysis was carried out on the stem bark. Acute toxicity studies were conducted in rats. In the pleurisy model the extract (30–300 mg/kg) significantly reduced the volume and amount of proteins and leucocytes in the exudate and also protected against lung injury. Tissue level of GSH and SOD and CAT expression were increased while MDA level and MPO activity were reduced. The peak and total oedema responses were significantly suppressed when given both preemptively and curatively in the mice paw oedema test. Saponins, alkaloids, triterpenoids, and tannins were present in the stem bark. A. micraster extract exhibited no apparent acute toxicity. We conclude that the ethanolic stem-bark extract of A. micraster has antioxidant action and exhibits significant anti-inflammatory activity through suppression of pleurisy and paw oedema induced with carrageenan.


Thrita ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Amira Rahana Abdullahi ◽  
Sani Malami ◽  
Lawal Alhassan Bichi

Background: Malaria is a parasitic infection that is common in the tropical and sub-tropical regions of the world. It is estimated to kill one million individuals annually. Detarium microcarpum (Fabaceae family) is used traditionally for the treatment of malaria, diabetes, hypertension, convulsions, pneumonia, leprosy, and meningitis. The purpose of this research was to evaluate the antiplasmodial potential and safety profile of the methanol extract of D. microcarpum stem bark. Methods: The extract was subjected to phytochemical screening and oral median lethal dose (LD50) estimation. Using curative, suppressive, and prophylactic experimental animal models, antiplasmodial activity was assessed in mice infected with chloroquine-sensitive Plasmodium berghei berghei. Biochemical and hematological tests were conducted in rats orally administered with the extract for 28 days. One-way analysis of variance (ANOVA) was used to analyze the data, followed by Dunnett's post hoc test. Results: Alkaloids, flavonoids, saponins, tannins, triterpenes, and glycosides were found in the extract through phytochemical analysis. When compared to the negative control group, the extract at the tested doses (200, 400, and 800 mg/kg) showed a significant (P < 0.001) curative, suppressive, and prophylactic effect and significantly (P < 0.001) prolonged the survival time of mice in the treated groups. The extract had an insignificant (P > 0.05) effect on the biochemical and hematological parameters tested. Conclusions: The results suggest that the stem bark extract of D. microcarpum at the doses tested possesses antiplasmodial activity and is relatively safe after short-term use.


2021 ◽  
Vol 266 ◽  
pp. 113424 ◽  
Author(s):  
Clarice Noussi Djouwoug ◽  
Raceline Kamkumo Gounoue ◽  
Florence Tsofack Ngueguim ◽  
Jaures Marius NankapTsakem ◽  
Clemence Donfack Gouni ◽  
...  

2008 ◽  
Vol 3 (4) ◽  
pp. 324-329 ◽  
Author(s):  
Syamsudin . ◽  
Soesanto Tjokrosonto . ◽  
Subagus Wahyuono . ◽  
Mustofa .

2019 ◽  
Vol 26 (2) ◽  
pp. 81
Author(s):  
Healthy Kainama ◽  
Sri Fatmawati ◽  
Mardi Santoso ◽  
Pieter Kakisina ◽  
Taslim Ersam

Garcinia husor is one of the folk medicines in Maluku-Indonesia. This species has been used for the treatmet of Malaria disease. The phytochemical contents and antiplasmodial activity not reported yet. In this study we evaluated the quantitative phytochemicals, in vitro and in vivo antiplasmodial activity of stem bark ethyl acetate extract. In vitro assay was done using P. falciparum 3D7 strain sensitive of chloroquine. For in vivo analysis, four groups of M. musculus were infected by P. berghei and their parasitemia levels were for 7 days of treatment with ethyl acetate extract; hematological and biochemical parameter were analyzed at the end of experiment. The result showed ethyl acetate extract with the TPC (169.47 mg GAE/100 g ±0.61) and TPC (167.37 mg QE/100 g ±1.05) was active against P. falciparum 3D7 strain (IC50 value of 0.31±0.43 μg/ml). The animal treated with extract showed suppression of parasitemia to 87.57±1.41% compared with the P. berghei infected-mice (negative control), ED50 value of 22.30 mg/kg BW. The dose of extract in 200 mg/kg BW was reduce parasitemia of infected mice with P. berghei more potential. The ethyl acetate of the stem bark G. husor with has antiplasmodial properties and future investigation are necessary to elucidate its mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document