scholarly journals Production of Anthocyanins in Callus Cultures of Angelica archangelica

2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301
Author(s):  
Tomáš Siatka

Anthocyanins have been used as food color additives, but they also possess many properties beneficial to health. Plant tissue culture technology is an attractive alternative for obtaining these valuable natural pigments. In this work, dark-grown anthocyanin producing callus cultures of Angelica archangelica were established. They were cultured on a Murashige and Skoog medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid and 0.4 mg/L benzylaminopurine. Anthocyanin contents in cultures were around 2%, i.e. one order of magnitude higher than in the intact plant that contains up to 0.17% anthocyanins. Growth and production characteristics of the culture were determined – fresh and dry biomass as well as anthocyanin levels reached a maximum on day 30. Effects of basal nutrient media on callus proliferation and anthocyanin accumulation were tested. Culture growth (fresh weight) achieved 105%, 102%, 141%, 129%, 54%, and 26%, and anthocyanin contents attained 114%, 41%, 33%, 31%, 25%, and 15% on Linsmaier and Skoog, Gamborg B5, Schenk and Hildebrandt, Woody plant, Nitsch and Nitsch, and Heller medium, respectively, in comparison with that of Murashige and Skoog.

HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1346-1348 ◽  
Author(s):  
Christopher M. Long ◽  
Colleen A. Mulinix ◽  
Amy F. Iezzoni

Microspore-derived callus cultures were obtained by anther culture of `Emperor Francis' sweet cherry (Prunus avium L.). Branches were removed from the field in January and March and forced in the laboratory. When the microspores reached the uninucleate stage, anthers were placed on modified Quoirin and Lepoivre liquid culture medium containing 4.4 μm BA and 4.5 μm 2,4-D. After ≈60 days, callus that emerged from the anthers was placed on woody plant medium supplemented with 1 μm 2,4-D and 3 μm 2iP and routinely transferred. The resulting 270 callus cultures were screened for two allozymes heterozygous in `Emperor Francis', Pgi-2 and 6-Pgd-1. Of the 270 callus cultures, 154 expressed only one allele each for Pgi-2 and 6-Pgd-1; thus, they were considered microspore-derived. The microspore-derived callus cultures can be used as a linkage mapping population. Chemical names used: 6-benzyladenine (BA); 2,4-dichlorophenoxyacetic acid (2,4-D); N6-(2-isopentenyl)-adenine (2iP).


1972 ◽  
Vol 11 (1) ◽  
pp. 95-109
Author(s):  
E. THOMAS ◽  
R. N. KONAR ◽  
H. E. STREET

Sections of callus of Ranunculus sceleratus reveal its organization into cellular aggregates, the superficial cells of which are highly cytoplasmic and the inner cells of which are larger, have less-dense cytoplasm and are more highly vacuolated. Expansion and ultimate death of some of the internal cells leads to cell separation and break up of the aggregates. Many of the superficial cells are involved in the initiation of embryoids in the callus and they correspond in structure with the embryogenic cells of the seedling stem epidermis. The embryoids are retarded in their development in presence of 2,4-dichlorophenoxyacetic acid (2,4-D) and embryoid development becomes more rapid and more prolific when cultures are transferred to a medium without 2,4-D. The similarity between the embryogenic cells of the callus cultures and those of the seedling stem epidermis extends to cell size, nuclear size, degree of vacuolation, abundance of ribosomes and mitochondria, presence of amyloplasts and prominence of spherosomes. The various forms of spherosome are described and their possible function discussed. Amyloplasts differentiating into chloroplasts are observed in the more advanced embryoids. There is evidence that embryoids can arise from single cells but it is uncertain whether all are of single-cell origin. The embryogenic cells are in protoplasmic continuity with surrounding cells when they embark upon embryogenesis. Some of the superficial cells, also clearly undergoing active division, are of rather different structure; characteristically their nuclei show a high degree of chromatin condensation and their cytoplasm contains bundles of fibrous material. It is suggested that these cells do not function directly in embryogenesis. The internal cells of the aggregates have a low density of ribosomes and very few ER profiles or normal mitochondria. Extremely elongated mitochondrial structures following the outline of the nucleus are observed in these cells. An unidentified structure is frequently observed in cells in which cytoplasmic disorganization appears to be occurring.


1996 ◽  
Vol 44 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Perumal Venkatachalam ◽  
Narayanasamypillai Jayabalan

High yields of protoplasts were obtained from immature leaves of aseptically grown plants of Arachis hypogaea using an enzyme solution containing cellulase 2.0% (w/v) and Macerozyme 1.0% (w/v) in 0.6 M mannitol. Isolated protoplasts were cultured in Kao's medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and mini calli in 4 weeks. After 4 weeks, protoplast colonies were transferred to the Murashige and Skoog (MS) medium supplemented with a-naphthalene acetic acid (NAA) and BAP. Colonies proliferated into actively growing calli. Further attempts to regenerate plants from such calli were not successful. However, protoclones differentiated roots on the same medium. Alternative methods for plant regeneration from protoplast derived callus cultures were tried through somatic embryogenesis. Protoplast-derived calli treated with 2,4-D and BAP formed somatic embryos. Somatic embryogenesis began in the proembryo stage and proceeded from globular to dicotyledonary stage. Embryos were then transferred onto hormone-free MS medium for germination. Five to ten percent of these embryoids germinated and grew to plantlets. Regenerated plants were transferred to plastic cups and grown to maturity.


1979 ◽  
Vol 57 (5) ◽  
pp. 512-516 ◽  
Author(s):  
John A. Simmonds ◽  
Daina H. Simmonds ◽  
Bruce G. Cumming

Protoplasts isolated from Lilium callus which was maintained on media containing 2% sucrose contained large deposits of starch granules and lysed during isolation and washing procedures. Stable protoplast preparations could be obtained from callus which had been subcultured on sucrose-free medium for 3 weeks. Maximum protoplast yield (1.5 × 106 per gram fresh weight) was obtained when KCl (0.3 M) was the osmotic stabilizer. Inclusion of CaCl2 (25 mM) and MgSO4 (25 mM) in the isolation and wash media decreased protoplast lysis. Viability of protoplasts isolated in the high salts medium was determined by their ability to accumulate sodium fluorescein in the cytoplasm. No cell-wall formation occurred when salts were used as the osmoticum in various culture media. Continuous light (5000 lx) was inhibitory to protoplast survival. When protoplasts were transferred, via a series of wash solutions, to culture media using sugars as the osmoticum and cultured in darkness, cell-wall formation was detected after 3 days and cell divisions after 21 days. Zeatin (10−6 M), was needed for cell-wall formation. Cell division was stimulated by a combination of zeatin (10−6 M), naphthaleneacetic acid (10−5 M), and 2,4-dichlorophenoxyacetic acid (10−7 M) in the basic nutrient medium.


1988 ◽  
Vol 66 (12) ◽  
pp. 2595-2596
Author(s):  
Susan C. MacDougall ◽  
Shona M. Ellis ◽  
Iain E. P. Taylor

A somatic polar structure was observed in white callus cultured, in the presence of 2,4-dichlorophenoxyacetic acid (10−6 M) and benzylaminopurine (4 × 10−6 M), from leaf explants taken from mature lodgepole pine trees. The structure contained elongate, vacuolate cells and small cells arranged with some resemblance to the first zygotic embryo cells. We were not able to induce further development.


Weed Science ◽  
1969 ◽  
Vol 17 (2) ◽  
pp. 175-180
Author(s):  
R. P. Upchurch ◽  
J. A. Keaton ◽  
H. D. Coble

Shoots of naturally established, foliated red maple (Acer rubrumL.) and persimmon (Diospyros virginianaL.) growing in North Carolina were treated with 2,4-dichlorophenoxyacetic acid (2,4-D) or 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) formulations following various shoot management procedures. Shoot management prior to treatment consisted of decapitating or not decapitating shoots at 2 inches above the ground line in May when the plants were 3 to 6 ft high. Herbicidal applications were made to uncut shoots and to resprouts of previously cut shoots at 30 and 60 days after decapitation. Responses measured 10, 14, and 22 months after treatment were percent control or original shoots, percent control of new shoots, shoot height, number of live stems/plant. The original shoot and new shoot values were averaged to provide a total shoot control index. Spraying of previously cut shoots at 30 or 60 days after cutting was more effective than spraying of uncut shoots except for 2,4,5-T applied to persimmon. The average total shoot control index for 2,4-D treated red maple, considering all rates, application dates, and evaluation dates was 82% for previously cut shoots and 56% for uncut shoots while the corresponding heights were 0.9 and 4.2 ft, respectively. For 2,4,5-T-treated red maple, the total shoot control indices were 92% and 78% for previously cut and uncut shoots, respectively, while the corresponding heights were 0.4 and 1.4 ft. For persimmon, there was a net advantage for treating previously cut shoots with 2,4-D, but the reverse was true for 2,4,5-T. The results are consistent with the theoretical behavior of 2,4-D and 2,4,5-T in woody plants outlined as a basis for conducting the study. Alternate explanations of results are proposed and practical implications described.


2014 ◽  
Vol 14 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Sandra Zorat Cordeiro ◽  
Naomi Kato Simas ◽  
Anaize Borges Henriques ◽  
Alice Sato

Mandevilla guanabarica is an endemic plant from Brazil, with pharmacological and ornamental potential, both unexplored. This study established the best culture medium for in vitro plant maintenance, efficient protocol for its regeneration, and callogenesis from different explants excised from in vitro-grown plants. Woody plant medium with double boron concentration (WPM B) plus 2.27 µM thidiazuron or 0.49 µM 2-isopentenyladenine provided multiplication rates higher than 1:6. Shoots were 100% rooted on WPM B. After acclimatization, plants showed 83% survival. For callogenesis, the use of MS media supplemented with high concentrations of picloram or 2,4-dichlorophenoxyacetic acid produced, respectively, friable or compact non-morphogenic calluses from different types of explants. This micropropagation protocol allows the production of seedlings of M. guanabarica for ornamental or commercial uses, and for conservation purposes; calluses can be used to establish suspension cultures in prospecting for bioactive compounds.


1991 ◽  
Vol 46 (3-4) ◽  
pp. 172-176 ◽  
Author(s):  
Hirobumi Yamamoto ◽  
Sumiko Kawai ◽  
Junko Mayumi ◽  
Toshiyuki Tanaka ◽  
Munekazu Iinuma ◽  
...  

Callus cultures of Sophora favescens var. angustifolia established on Murashige-Skoog medium containing 1 μм 2,4-dichlorophenoxyacetic acid and 1 μм kinetin produced the prenylated flavanones (2S)-5,7,2′,4′-tetrahydroxy-8-lavandulylflavanone (sophoraflavanone G) and (25)-7,2′,4′-trihydroxy-8-lavandulylflavanone (lehmannin). In addition, maackiain and its 3-O-β-glucoside (trifolirhizin) were also produced in the callus. Up on transfer to White’s medium or M9 medium, the content of prenylated flavanones, in particular lehmannin, was increased, whereas that of pterocarpans was decreased. Time-course experiments indicated that the production of pterocarpans was closely related with cell growth. On the other hand, an inverse relationship existed between cell growth and the production of prenylated flavanones.


2010 ◽  
Vol 53 (3) ◽  
pp. 679-686 ◽  
Author(s):  
Claudia Simões ◽  
Norma Albarello ◽  
Cátia Henriques Callado ◽  
Tatiana Carvalho de Castro ◽  
Elisabeth Mansur

This paper describes a protocol for the efficient vegetative propagation of Cleome rosea by somatic embryogenesis. Leaf and stem explants from nursery-grown seedlings of C. rosea were cultivated on Murashige and Skoog (MS) medium supplemented with indole-3-acetic acid (IAA), a -naphthaleneacetic acid (NAA), 4-amino-3,5,6-trichloropicolinic acid (picloram) or 2,4-dichlorophenoxyacetic acid (2,4-D). Nodular calli were produced from both explant types in the presence of 4.5 and 9.0 µM 2,4-D. Embryo development and maturation were achieved when calli from stem explants were transferred to media containing a ten-fold reduction of 2,4-D concentration initially used (0.45 and 0.90 µM). Leaf-derived calli did not form embryos with the same treatments. The highest frequency of embryogenic callus formation (85%) and number of embryo per callus (13.45 ± 2.8) were achieved during the first subculture on medium supplemented with 0.90 µM 2,4-D. Embryo conversion into plantlets was achieved following transfer to growth regulator-free MS medium solidified with 2 g.L-1 phytagel. An acclimatization rate of 53% was found three months after transfer to ex vitro conditions and the recovered plants presented a normal phenotypic aspect.


Sign in / Sign up

Export Citation Format

Share Document