scholarly journals Micropropagation and callogenesis in Mandevilla guanabarica (Apocynaceae), an endemic plant from Brazil

2014 ◽  
Vol 14 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Sandra Zorat Cordeiro ◽  
Naomi Kato Simas ◽  
Anaize Borges Henriques ◽  
Alice Sato

Mandevilla guanabarica is an endemic plant from Brazil, with pharmacological and ornamental potential, both unexplored. This study established the best culture medium for in vitro plant maintenance, efficient protocol for its regeneration, and callogenesis from different explants excised from in vitro-grown plants. Woody plant medium with double boron concentration (WPM B) plus 2.27 µM thidiazuron or 0.49 µM 2-isopentenyladenine provided multiplication rates higher than 1:6. Shoots were 100% rooted on WPM B. After acclimatization, plants showed 83% survival. For callogenesis, the use of MS media supplemented with high concentrations of picloram or 2,4-dichlorophenoxyacetic acid produced, respectively, friable or compact non-morphogenic calluses from different types of explants. This micropropagation protocol allows the production of seedlings of M. guanabarica for ornamental or commercial uses, and for conservation purposes; calluses can be used to establish suspension cultures in prospecting for bioactive compounds.

2017 ◽  
Vol 65 (1) ◽  
pp. 80 ◽  
Author(s):  
Bilan Huang ◽  
Li Xu ◽  
Kelie Li ◽  
Yunlu Fu ◽  
Zhiying Li

An in vitro protocol for Callerya speciosa (Champ.) Schot regeneration through embryogenesis was developed using the anthers as the explants. The late uninucleate stage of the microspore was optimal for the anther culture of C. speciosa. Embryonic callus was induced on a MS basal medium supplemented with 4.4 µM 6-benzylaminopurine (BA) and 9.04 µM 2,4-dichlorophenoxyacetic acid (2,4-D). Embryos were obtained on MS medium supplemented with 2.2 µM BA and 0.5 µM naphthaleneacetic acid (NAA). The highest percentage (16.7%) of embryos was achieved using the culture medium MS + 0.25 µM NAA + 1.1 µM BA. The highest percentage of embryos that developed into plants was 18.3%. However, haploid plants were not observed, which may have been due to the collection of the calli from the anther wall. The results presented here demonstrate the establishment of a highly efficient and rapid system for regenerating C. speciosa using anther cultures.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Likyelesh Gugsa ◽  
Jochen Kumlehn

Tef (Eragrostis tef) provides a major source of human nutrition in the Horn of Africa, but biotechnology has had little impact on its improvement to date. Here, we report the elaboration of an in vitro regeneration protocol, based on the use of immature zygotic embryos as explant. Explant size was an important determinant of in vitro regeneration efficiency, as was the formulation of the culture medium. Optimal results were obtained by culturing 0.2–0.35 mm embryo explants on a medium containing KBP minerals, 9.2–13.8 μM 2,4-dichlorophenoxyacetic acid, 6 mM glutamine, and 0.5% Phytagel. Although this protocol was effective for both the improved cultivar “DZ-01-196” and the landrace “Fesho”, the former produced consistently more embryogenic tissue and a higher number of regenerants. An average of more than 2,800 shoots could be obtained from each “DZ-01-196” explant after 12 weeks of in vitro culture. These shoots readily formed roots, and plantlets transferred to soil were able to develop into morphologically normal, fertile plants. This regeneration and multiplication system should allow for the application of a range of biotechnological methods to tef.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 761
Author(s):  
Arun Kumar Khajuria ◽  
Christophe Hano ◽  
Narendra Singh Bisht

Viola canescens Wall. ex. Roxb. is an important but threatened medicinal herb found at 1500–2400 m above mean sea level in the Himalayas. Overexploitation and habitat preference have put the plant under serious threat. Thus, the present study was undertaken to develop an efficient protocol for in vitro propagation via somatic embryogenesis. The results revealed that plant can be regenerated successfully through somatic embryogenesis using leaf derived calli. Regular subculturing of calli on Murashige and Skoog (MS) medium with 2,4-dichlorophenoxyacetic acid (2,4-D)/indole-3-butyric acid (IBA)/kinetin (Kn) and varying combinations of 2,4-D+Kn induced somatic embryogenesis. The maximum average number of somatic embryos (SE) (19.15 ± 2.66) was induced on the medium with 0.15 + 0.05 mg L−1 of 2,4-D and Kn, respectively, and this medium was used as a control. To enhance somatic embryo induction, the control MS medium was supplemented with l-glutamine (200–400 mg L−1) and casein hydrolysate (1–4%). The maximum average number of SE (27.66 ± 2.67) and average mature SE (13.16 ± 3.48) were recorded on the medium having 2 % l-glutamine and 50 mg L−1 casein hydrolysate. The induced SE were asynchronous, so, to foster their maturation, the culture medium (free from growth regulators) was supplemented with abscisic acid (ABA) and silver nitrate (AgNO3). The maximum average number (35.96 ± 3.68) of mature SE was noticed on MS medium supplemented with 1.5 mg L−1 ABA. Mature embryos had two well-developed cotyledons and an elongated hypocotyl root axis. The development of SE into plantlets was significant for embryos matured on the medium with AgNO3 and ABA, with 86.67% and 83.33% conversion on the medium with 0.20 mg L−1 6-benzylaminopurine (BAP). The plantlets thus produced acclimatized in a growth chamber before being transferred to the field, which showed 89.89% survival. The plants were morphologically similar to the mother plant with successful flowering.


Author(s):  
Kicia K. P. Gomes- Copeland ◽  
Izulmé R. I. Santos ◽  
Amanda G. Torres ◽  
João V. D. Gomes ◽  
Fabrício T. C. de Almeida ◽  
...  

Amaryllidaceae include plant species that present alkaloids with analgesic, anti-cancer, anti-bacterial, anti-viral, anti-fungal and anti-malarial activities. Due to this pharmacological value, several species of this family have been widely studied and among them is White lilly, Crinum americanum. The objective of this work was to induce callogenesis on leaf explants of C. americanum cultivated in vitro for future production of alkaloids. Leaf explants were grown on a culture medium (solid) Murashige and Skoog (1962) supplemented with different concentrations and combinations of plant growth regulators, auxin 2,4-dichlorophenoxyacetic acid and cytokinin 6-benzylaminopurine and their effect on callogenesis assessed for percentage oxidation and explants responsive to callus induction. Callus formation started 10 days after hormone inoculation, and within 30 days after inoculation the best callogenesis and callus biomass growth were observed in medium containing 2.5 mg L-1 of 2,4-dichlorophenoxyacetic acid and 10 mg L-1 of 6-benzylaminopurine. The lowest percentage of oxidation was observed on explants cultivated on medium containing 5 mg L-1 of 6-benzylaminopurine and 2.5 mg L-1 of 2,4-dichlorophenoxyacetic acid. The calli obtained were compact and embryogenic. This work contributes not only to future studies on in vitro callogenesis of this species, but also to a possible protocol for the production of alkaloids of interest from cell suspension cultures produced in vitro. This is the first report of callus formation in Crinum americanum explants.


2003 ◽  
Vol 27 (6) ◽  
pp. 1277-1284 ◽  
Author(s):  
André Luis Coelho da Silva ◽  
Cecília Sulzbacher Caruso ◽  
Renato de Azevedo Moreira ◽  
Ana Cecília Góes Horta

With the objective to promote in vitro callus induction, cotyledon and hypocotyl segments of "perennial soybean" (Glycine wightii (Wight & Arn.) Verdc.) were inoculated in basal medium MS supplemented with sucrose (1.5 e 3%) and 0.8% agar and different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-furfurylaminopurine (kinetin). The explants were maintained in a dark growth room at 28ºC. The best callus induction was observed in explants (cotyledon and hypocotyl) maintained in medium containing the combination of 2,4-D (1 mg.L-1), kinetin (0.1 mg.L-1) and 3% sucrose. To promote callus subculture, the MS medium was supplemented with different combinations of 2,4-D (0.5 to 4.0 mg.L-1), with or without kinetin (0.1 mg.L-1) and sucrose (1.5 e 3%). The calli were maintained 35 days in a dark growth room at 28ºC. The results indicated that the use of 2,4-D 1.0 mg.L-1 + kinetin 0.1 mg.L-1 + sucrose 3% provided the highest average weight of cotyledons calli fresh matter, whereas the use of 2,4-D 2.0 mg.L-1 + kinetin 0.1 mg.L-1 + sucrose 3% provided the highest average weight of hypocotyl calli fresh matter. High concentrations of 2,4-D, independent of kinetin and sucrose concentrations, promoted oxidation and reduction in fresh weight from calli of cotyledon and hypocotyls.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1346-1348 ◽  
Author(s):  
Christopher M. Long ◽  
Colleen A. Mulinix ◽  
Amy F. Iezzoni

Microspore-derived callus cultures were obtained by anther culture of `Emperor Francis' sweet cherry (Prunus avium L.). Branches were removed from the field in January and March and forced in the laboratory. When the microspores reached the uninucleate stage, anthers were placed on modified Quoirin and Lepoivre liquid culture medium containing 4.4 μm BA and 4.5 μm 2,4-D. After ≈60 days, callus that emerged from the anthers was placed on woody plant medium supplemented with 1 μm 2,4-D and 3 μm 2iP and routinely transferred. The resulting 270 callus cultures were screened for two allozymes heterozygous in `Emperor Francis', Pgi-2 and 6-Pgd-1. Of the 270 callus cultures, 154 expressed only one allele each for Pgi-2 and 6-Pgd-1; thus, they were considered microspore-derived. The microspore-derived callus cultures can be used as a linkage mapping population. Chemical names used: 6-benzyladenine (BA); 2,4-dichlorophenoxyacetic acid (2,4-D); N6-(2-isopentenyl)-adenine (2iP).


1972 ◽  
Vol 50 (12) ◽  
pp. 2471-2477 ◽  
Author(s):  
T. T. Lee

Peroxidase in tobacco callus tissue (Nicotiana tabacum, cv. White Gold) was resolved into three groups of isoenzymes by polyacrylamide gel electrophoresis, and a combined action of cytokinin, auxin, and gibberellin in their formation was clearly demonstrated. The most significant change was in a group of fast-migrating isoperoxidases, the development of which required both kinetin and indoleacetic acid. Kinetin was most stimulatory at 0.2 μM but became inhibitory with increasing concentrations. Indole acetic acid was effective at concentrations from 0.1 to 100 μM with an optimum at 10 μM. With both kinetin and indoleacetic acid at optimal concentrations, addition of gibberellic acid further increased the contents of the fast migrating isoperoxidases, but it was inactive in the absence of indoleacetic acid or in the presence of kinetin in 5 μM or higher concentrations. Cycloheximide, actinomycin D, and abscisic acid inhibited the formation of the fast-migrating peroxidases. Formation of the fast-migrating isoperoxidase in the tissue was associated with tumor-type growth.2,4-Dichlorophenoxyacetic acid had a dual effect on peroxidase; at low concentrations (0.1 to 1 μM) it promoted a fast-migrating isoperoxidase; at high concentrations (10 to 100 μM) it inhibited the fast-migrating isoperoxidase but caused a significant increase in other isoperoxidases of lower electrophoretic mobilities.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


1984 ◽  
Vol 62 (7) ◽  
pp. 1393-1397 ◽  
Author(s):  
M. D. Zhou ◽  
T. T. Lee

The callus-promoting activity of most commonly known as well as some rarely tested auxins was compared with that of 2,4-dichlorophenoxyacetic acid (2,4-D) for in vitro culture of the excised embryo of spring and winter wheat (Triticum aestivum L.), cv. Chinese Spring and cv. Fredrick. Different auxins in a concentration range from 1 to 50 μM showed widely different activities. Also the two wheat cultivars responded differently to the auxins. When rapid callus formation with limited root growth was used as the basis for comparison, 2-(2-methyl-4-chlorophenoxy)propionic acid (2-MCPP), α-naphthaleneacetic acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6,trichloropicolinic acid (picloram), γ-(2,4-dichlorophenoxy)butyric acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid, in the order of effectiveness, were superior to 2,4,-D for callus induction from the embryo of 'Chinese Spring,' although the concentration required was higher than that of 2,4-D. For the winter wheat 'Fredrick,' however, only picloram, dicamba, and 2-MCPP performed as well as 2,4-D. All auxins tested promoted shoot growth; 2-methyl-4-chlorophenoxypropionic acid was most effective for 'Chinese Spring,' whereas picloram was most effective for 'Fredrick.'


Sign in / Sign up

Export Citation Format

Share Document