scholarly journals Influence of Body Position on Shoulder and Trunk Muscle Activation During Resisted Isometric Shoulder External Rotation

2018 ◽  
Vol 10 (4) ◽  
pp. 355-360 ◽  
Author(s):  
David A. Krause ◽  
Lucas G. Dueffert ◽  
Jaclyn L. Postma ◽  
Eric T. Vogler ◽  
Amy J. Walsh ◽  
...  

Background: External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Hypothesis: Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Study Design: Quasi-experimental repeated-measures study. Level of Evidence: Level 5. Methods: A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). Results: There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. Conclusion: While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. Clinical Relevance: If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side plank position is preferred as compared with standing or side lying.

Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


2010 ◽  
Vol 90 (4) ◽  
pp. 538-549 ◽  
Author(s):  
Lars L. Andersen ◽  
Christoffer H. Andersen ◽  
Ole S. Mortensen ◽  
Otto M. Poulsen ◽  
Inger Birthe T. Bjørnlund ◽  
...  

BackgroundHigh-intensity resistance training plays an essential role in the prevention and rehabilitation of musculoskeletal injuries and disorders. Although resistance exercises with heavy weights yield high levels of muscle activation, the efficacy of more user-friendly forms of exercise needs to be examined.ObjectiveThe aim of this study was to investigate muscle activation and perceived loading during upper-extremity resistance exercises with dumbbells compared with elastic tubing.DesignA single-group, repeated-measures study design was used.SettingExercise evaluation was conducted in a laboratory setting.ParticipantsSixteen female workers (aged 26–55 years) without serious musculoskeletal diseases and with a mean neck and shoulder pain intensity of 7.8 on a 100-mm visual analog scale participated in the study.MeasurementsElectromyographic (EMG) activity was measured in 5 selected muscles during the exercises of lateral raise, wrist extension, and shoulder external rotation during graded loadings with dumbbells (2–7.5 kg) and elastic tubing (Thera-Band, red to silver resistance). The order of exercises and loadings was randomized for each individual. Electromyographic amplitude was normalized to the absolute maximum EMG amplitude obtained during maximal voluntary isometric contraction and exercise testing. Immediately after each set of exercise, the Borg CR10 scale was used to rate perceived loading during the exercise.ResultsResistance exercise with dumbbells as well as elastic tubing showed increasing EMG amplitude and perceived loading with increasing resistance. At the individually maximal level of resistance for each exercise—defined as the 3 repetitions maximum—normalized EMG activity of the prime muscles was not significantly different between dumbbells (59%–87%) and elastic tubing (64%–86%). Perceived loading was moderately to very strongly related to normalized EMG activity (r=.59–.92).LimitationsThe results of this study apply only for exercises performed in a controlled manner (ie, without sudden jerks or high acceleration).ConclusionsComparably high levels of muscle activation were obtained during resistance exercises with dumbbells and elastic tubing, indicating that therapists can choose either type in clinical practice. The Borg CR10 can be a useful aid in estimating intensity of individual rehabilitation protocols.


2007 ◽  
Vol 16 (4-5) ◽  
pp. 187-191 ◽  
Author(s):  
Brandon Isaacson ◽  
Emily Murphy ◽  
Helen Cohen

The objective of this study was to assess the effects of different methods of sternocleidomastoid muscle (SCM) activation on vestibular evoked myogenic potentials (VEMP). Forty normal volunteers were tested using three different methods of SCM activation: sitting with the head turned away from the test ear (SIT), supine with the head held straight up (SHU), and supine with the head held up and turned away from the test ear (SHT). Dependent measures were latency, and amplitude. Head and body position significantly affected the amplitude of the VEMP, but had no significant effect on latency. Testing subjects in the supine position with the head up and turned toward the non-test ear yielded the most robust amplitude response and sternocleidomastoid EMG activity. When amplitude measures where corrected according to tonic electromyographic (EMG) activity no significant difference was noted between the three different test positions. The increased amplitude in the supine with head turned position can be directly attributed to increased tonic SCM EMG activity.


Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.


2014 ◽  
Vol 30 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Alison C. McDonald ◽  
Elora C. Brenneman ◽  
Alan C. Cudlip ◽  
Clark R. Dickerson

As the modern workplace is dominated by submaximal repetitive tasks, knowledge of the effect of task location is important to ensure workers are unexposed to potentially injurious demands imposed by repetitive work in awkward or sustained postures. The purpose of this investigation was to develop a three-dimensional spatial map of the muscle activity for the right upper extremity during laterally directed submaximal force exertions. Electromyographic (EMG) activity was recorded from fourteen muscles surrounding the shoulder complex as the participants exerted 40N of force in two directions (leftward, rightward) at 70 defined locations. Hand position in both push directions strongly influenced total and certain individual muscle demands as identified by repeated measures analysis of variance (P< .001). During rightward exertions individual muscle activation varied from 1 to 21% MVE and during leftward exertions it varied from 1 to 27% MVE with hand location. Continuous prediction equations for muscular demands based on three-dimensional spatial parameters were created with explained variance ranging from 25 to 73%. The study provides novel information for evaluating existing and proactive workplace designs, and may help identify preferred geometric placements of lateral exertions in occupational settings to lower muscular demands, potentially mitigating fatigue and associated musculoskeletal risks.


Author(s):  
Kazuma Uebayashi ◽  
Yu Okubo ◽  
Takuya Nishikawa ◽  
Taro Morikami ◽  
Jindo Hatanaka

BACKGROUND: Given the characteristics of the superficial trunk muscles that cross the chest and pelvis, their excessive contraction might limit chest mobility. OBJECTIVE: To examine the immediate effects of two types of trunk muscle exercises on chest mobility and trunk muscle activities. METHODS: Fourteen healthy men (age: 21.1 ± 1.0 years, height: 172.7 ± 5.6 cm, weight: 61.0 ± 7.1 kg, body mass index: 20.4 ± 1.7 kg/m2; mean ± SD) randomly performed trunk side flexion and draw-in exercises using a cross-over design. The chest kinematic data and trunk muscle activities were measured before and after each intervention during the following tasks: maximum inspiration/expiration and maximum pelvic anterior/posterior tilt while standing. Two-way repeated measures analysis of variance was used for statistical analysis (P< 0.05). RESULTS: After the side flexion, upper and lower chest mobility significantly decreased, and superficial trunk muscle activity significantly increased during the maximum pelvic anterior tilt (P< 0.05). Additionally, after the draw-in, upper chest mobility significantly increased during the maximum pelvic anterior tilt (P< 0.05). CONCLUSIONS: Increased activity of the superficial abdominal muscles might limit chest mobility during maximum pelvic anterior tilt. Conversely, the facilitation of deep trunk muscles might increase upper chest mobility during the maximum pelvic anterior tilt.


2016 ◽  
Vol 25 (2) ◽  
Author(s):  
Sally J. McLaine ◽  
Karen A. Ginn ◽  
Cecilia M. Kitic ◽  
James W. Fell ◽  
Marie-Louise Bird

Context: The reliable measurement of shoulder strength is important when assessing athletes involved in overhead activities. Swimmers' shoulders are subject to repetitive humeral elevation and consequently have a high risk of developing movement-control issues and pain. Shoulder-strength tests performed in positions of elevation assist with the detection of strength deficits that may affect injury and performance. The reliability of isometric strength tests performed in positions of humeral elevation without manual stabilization, which is a typical clinical scenario, has not been established. Objective: To establish the relative and absolute intrarater reliability of shoulder-strength tests functional to swimming in 3 body positions commonly used in the clinical setting. Design: Repeated-measures reliability study. Setting: Research laboratory. Subjects: 15 university students and staff (mean ± SD age 24 ± 8.2 y).Intervention: Isometric shoulder-strength tests were performed in positions of humeral elevation (flexion and extension in 140° abduction in the scapular plane, internal and external rotation in 90° abduction) on subjects without shoulder pain in supine, prone, and sitting. Subjects were tested by 1 examiner with a handheld dynamometer and retested after 48 h. Main Outcome Measures: Relative reliability (ICC3,1) values with 95% CI. Absolute reliability was reported by minimal detectable change (MDC). Results: Good to excellent intrarater reliability was found for all shoulder-strength tests (ICC .87-.99). Intrarater reliability was not affected by body position. MDC% was <16% for every test and ≤11% for tests performed in supine. Conclusions: Shoulder flexion, extension, and internal- and external-rotation strength tests performed in humeral elevation demonstrated excellent to good intrarater reliability regardless of body position. A strength change of more than 15% in any position can be considered meaningful.


2014 ◽  
Vol 30 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Marcelo P. de Castro ◽  
Daniel Cury Ribeiro ◽  
Felipe de C. Forte ◽  
Joelly M. de Toledo ◽  
Daniela Aldabe ◽  
...  

The current study aimed to compare the shoulder kinematics (3D scapular orientation, scapular angular displacement and scapulohumeral rhythm) of asymptomatic participants under unloaded and loaded conditions during unilateral shoulder elevation in the scapular plane. We used a repeated-measures design with a convenience sample. Eleven male participants with an age range of 21–28 years with no recent history of shoulder injury participated in the study. The participants performed isometric shoulder elevation from a neutral position to approximately 150 degrees of elevation in the scapular plane in intervals of approximately 30 degrees during unloaded and loaded conditions. Shoulder kinematic data were obtained with videogrammetry. During shoulder elevation, the scapula rotated upwardly and externally, and tilted posteriorly. The addition of an external load did not affect 3D scapular orientation, scapular angular displacement, or scapulohumeral rhythm throughout shoulder elevation (P> .05). In clinical practice, clinicians should expect to observe upward and external rotation and posterior tilt of the scapula during their assessments of shoulder elevation. Such behavior was not influenced by an external load normalized to 5% of body weight when performed in an asymptomatic population.


2011 ◽  
Vol 46 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Mithun Joshi ◽  
Charles A. Thigpen ◽  
Kevin Bunn ◽  
Spero G. Karas ◽  
Darin A. Padua

Context: Glenohumeral external rotation (GH ER) muscle fatigue might contribute to shoulder injuries in overhead athletes. Few researchers have examined the effect of such fatigue on scapular kinematics and muscle activation during a functional movement pattern. Objective: To examine the effects of GH ER muscle fatigue on upper trapezius, lower trapezius, serratus anterior, and infraspinatus muscle activation and to examine scapular kinematics during a diagonal movement task in overhead athletes. Setting: Human performance research laboratory. Design: Descriptive laboratory study. Patients or Other Participants: Our study included 25 overhead athletes (15 men, 10 women; age = 20 ± 2 years, height = 180 ± 11 cm, mass = 80 ± 11 kg) without a history of shoulder pain on the dominant side. Intervention(s): We tested the healthy, dominant shoulder through a diagonal movement task before and after a fatiguing exercise involving low-resistance, high-repetition, prone GH ER from 0° to 75° with the shoulder in 90° of abduction. Main Outcome Measure(s): Surface electromyography was used to measure muscle activity for the upper trapezius, lower trapezius, serratus anterior, and infraspinatus. An electromyographic motion analysis system was used to assess 3-dimensional scapular kinematics. Repeated-measures analyses of variance (phase × condition) were used to test for differences. Results: We found a decrease in ascending-phase and descending-phase lower trapezius activity (F1,25 = 5.098, P = .03) and an increase in descending-phase infraspinatus activity (F1,25 = 5.534, P = .03) after the fatigue protocol. We also found an increase in scapular upward rotation (F1,24 = 3.7, P = .04) postfatigue. Conclusions: The GH ER muscle fatigue protocol used in this study caused decreased lower trapezius and increased infraspinatus activation concurrent with increased scapular upward rotation range of motion during the functional task. This highlights the interdependence of scapular and glenohumeral force couples. Fatigue-induced alterations in the lower trapezius might predispose the infraspinatus to injury through chronically increased activation.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


Sign in / Sign up

Export Citation Format

Share Document