scholarly journals The Effects of Abdominal Hypopressive Training on Postural Control and Deep Trunk Muscle Activation: A Randomized Controlled Trial

Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.

2021 ◽  
Vol 12 ◽  
Author(s):  
Henrique V. Taveira ◽  
Claudio A. B. de Lira ◽  
Marilia S. Andrade ◽  
Ricardo B. Viana ◽  
Hirofumi Tanaka ◽  
...  

Trunk muscle strength and control is an important prerequisite for everyday activities among elderly people decreasing the predisposition to falls. High levels of physical exercise performed by older athletes could offer benefits to core/trunk muscle strength and postural control compared with recreational physical activities and among elderly people with lower levels of physical activity. The present study aimed to compare trunk muscle strength and postural control of older running athletes vs. older physically active adults. Participants were master road runners (RUN, n = 15, six women, 64.3 ± 3.6 years) and physically active elderly (control group, CON, n = 15, six women, 65.4 ± 5.0 years) people that were submitted to the evaluations: esthesiometer, posturography (force plate), and isokinetic test (Biodex dynamometer) of trunk muscle extension and flexion. RUN presented higher values for relative peak torque of trunk extensor muscles at 60°/s (p = 0.046) and 180°/s (p = 0.007) and relative average power during trunk extension at 60°/s (p = 0.008) and 180°/s (p = 0.004) compared to CON. CON had a higher medial-lateral oscillation speed of the center of pressure in the stable condition with eyes closed (p = 0.004) compared to RUN. RUN presented higher isokinetic torque of extensor trunk muscles and better postural control than CON. This supposedly could help with postural control and balance and contribute to the prevention of falls among the elderly. The practice of running systematically by master athletes may partially explained our findings.


2021 ◽  
Vol 8 ◽  
Author(s):  
María del Carmen Carcelén-Fraile ◽  
Agustín Aibar-Almazán ◽  
Antonio Martínez-Amat ◽  
Vânia Brandão-Loureiro ◽  
José Daniel Jiménez-García ◽  
...  

In the present study, we aimed to determine the effects of a Qigong exercise program on the muscle strength and postural control in middle-aged and older postmenopausal women. This is a randomized clinical trial (https://clinicaltrials.gov/ct2/show/NCT03989453) conducted on 125 women who were initially assigned to either an experimental group (n = 63) that performed a Qigong exercise program for 12 weeks or to a control group (n = 62) that did not receive any intervention. Muscle strength (dynamometer) and postural control (stabilometric platform) were evaluated before and immediately after an intervention period. The main findings of this study suggest that the women in the experimental group had improvements in muscle strength, mean velocity of the displacement of the center of pressure (CoP) with both eyes open and closed, and the surface sway area covered by the CoP, as well as the mediolateral and anteroposterior oscillations of the CoP, only with eyes open. The results of the present study determined that a 12 week Qigong exercise program has beneficial effects on muscle strength and postural control of middle-aged and older postmenopausal Spanish women.


2021 ◽  
Vol 4 (1) ◽  
pp. 013-022
Author(s):  
Blanchet Mariève ◽  
Prince François ◽  
Lemay Martin ◽  
Chouinard Sylvain ◽  
Messier Julie

We explored if adolescents with Gilles de la Tourette syndrome (GTS) had functional postural control impairments and how these deficits are linked to a disturbance in the processing and integration of sensory information. We evaluated the displacements of the center of pressure (COP) during maximal leaning in four directions (forward, backward, rightward, leftward) and under three sensory conditions (eyes open, eyes closed, eyes closed standing on foam). GTS adolescents showed deficits in postural stability and in lateral postural adjustments but they had similar maximal COP excursion than the control group. The postural performance of the GTS group was poorer in the eyes open condition (time to phase 1 onset, max-mean COP). Moreover, they displayed a poorer ability to maintain the maximum leaning position under the eyes open condition during mediolateral leaning tasks. By contrast, during forward leaning, they showed larger min-max ranges than control subjects while standing on the foam with the eyes closed. Together, these findings support the idea that GTS produces subclinical postural control deficits. Importantly, our results suggest that postural control disorders in GTS are highly sensitive to voluntary postural leaning tasks which have high demand for multimodal sensory integration.


Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


Author(s):  
Marinella Coco ◽  
Andrea Buscemi ◽  
Emanuele Pennisi ◽  
Paolo Cavallari ◽  
Giacomo Papotto ◽  
...  

Background: It has recently been noticed that the quantity of stress affects postural stability in young women. The study was conducted with the goal of investigating whether increased stress may damagingly effect posture control in 90 young men (71 right-handed and 19 left-handed) while maintaining an upright bipedal posture, while keeping their eyes open or closed. Perceived Stress Scale (PSS) was administered and changes in free cortisol levels were monitored (Cortisol Awakening Response, CAR) in order to evaluate the amount of stress present during awakening, while the Profile of Mood States (POMS) was used to estimate distress on the whole. Posture control was evaluated with the use of a force platform, which, while computing a confidence ellipse area of 95%, was engaged by the Center of Pressure through five stability stations and was sustained for a minimum of 52 s, with and without visual input. Another goal of the experiment was to find out whether or not cortisol increases in CAR were linked with rises of blood lactate levels. Results: CAR, PSS and POMS were found to be extensively related. Furthermore, it has been observed that increases in salivary cortisol in CAR are associated with small but significant increases in blood lactate levels. As expected, stress levels did affect postural stability. Conclusions: The results of the present study confirm that the level of stress can influence postural stability, and that this influence is principally obvious when visual information is not used in postural control.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2452
Author(s):  
Ana Cecilia Villa-Parra ◽  
Jessica Lima ◽  
Denis Delisle-Rodriguez ◽  
Laura Vargas-Valencia ◽  
Anselmo Frizera-Neto ◽  
...  

The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients’ gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.


2019 ◽  
Vol 67 (1) ◽  
pp. 235-245
Author(s):  
Javier Fernández-Rio ◽  
Luis Santos ◽  
Benjamín Fernández-García ◽  
Roberto Robles ◽  
Iván Casquero ◽  
...  

AbstractThe goal of this study was to assess the effects of a supervised slackline training program in a group of soccer players. Thirty-four male division I under-19 players (16.64 ± 0.81 years) agreed to participate in the study. They were randomly divided into an experimental group (EG) and a control group (CG). The first group (EG) followed a 6-week supervised slackline training program (3 sessions/week; 5-9 min/session), while the CG performed only regular soccer training. Several variables were assessed in all participants: acceleration (20-m sprint test), agility (90º turns test), jump performance (squat jump, countermovement jump), and postural control (Center of Pressure ( CoP) testing: length, area, speed, Xmean, Ymean, Xspeed, Yspeed, Xdeviation, Ydeviation). Ratings of perceived exertion and local muscle ratings of perceived exertions were also recorded after each slackline training session. At post-tests, there was a significant increase only in the EG in acceleration, agility, squat jump and countermovement jump performance, as well as several CoP variables: area in the bipedal support on a firm surface, and length, area and speed in the left leg on a firm surface. The program was rated as “somewhat hard” by the players, while quadriceps, gastrocnemius and tibialis anterior were the most exerted muscles while slacklining. In conclusion, slackline training can be an effective training tool for young, high-level soccer players.


2020 ◽  
Vol 34 (6) ◽  
pp. 764-772
Author(s):  
Irene Cabrera-Martos ◽  
Ana Teresa Jiménez-Martín ◽  
Laura López-López ◽  
Janet Rodríguez-Torres ◽  
Araceli Ortiz-Rubio ◽  
...  

Objective: To explore the effects of an eight-week core stability program on balance ability in persons with Parkinson’s disease. Design: Randomized controlled trial. Setting: A local Parkinson’s association. Subjects: A total of 44 participants with a clinical diagnosis of Parkinson’s disease were randomly assigned to an experimental ( n = 22) or control group ( n = 22). Intervention: The experimental group received 24 sessions of core training, while the control group received an intervention including active joint mobilization, muscle stretching, and motor coordination exercises. Main measures: The primary outcome measure was dynamic balance evaluated using the Mini-Balance Evaluation Systems Test. Secondary outcomes included the balance confidence assessed with the Activities-specific Balance Confidence Scale and standing balance assessed by the maximal excursion of center of pressure during the Modified Clinical Test of Sensory Interaction on Balance and the Limits of Stability test. Results: After treatment, a significant between-group improvement in dynamic balance was observed in the experimental group compared to the control group (change, 2.75 ± 1.80 vs 0.38 ± 2.15, P = 0.002). The experimental group also showed a significant improvement in confidence (change, 16.48 ± 16.21 vs 3.05 ± 13.53, P = 0.047) and maximal excursion of center of pressure in forward (change, 0.86 ± 1.89 cm vs 0.17 ± 0.26 cm, P = 0.048), left (change, 0.88 ± 2.63 cm vs 0.07 ± 0.48 cm, P = 0.010), and right (change, 1.63 ± 2.82 cm vs 0.05 ± 0.17 cm, P = 0.046) directions of limits of stability compared to the control group. Conclusion: A program based on core stability in comparison with non-specific exercise benefits dynamic balance and confidence and increases center of mass excursion in patients with Parkinson’s disease.


2018 ◽  
Vol 10 (4) ◽  
pp. 355-360 ◽  
Author(s):  
David A. Krause ◽  
Lucas G. Dueffert ◽  
Jaclyn L. Postma ◽  
Eric T. Vogler ◽  
Amy J. Walsh ◽  
...  

Background: External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Hypothesis: Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Study Design: Quasi-experimental repeated-measures study. Level of Evidence: Level 5. Methods: A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). Results: There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. Conclusion: While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. Clinical Relevance: If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side plank position is preferred as compared with standing or side lying.


2015 ◽  
Vol 119 (6) ◽  
pp. 696-703 ◽  
Author(s):  
Han Houdijk ◽  
Starr E. Brown ◽  
Jaap H. van Dieën

Postural control performance is often described in terms of postural sway magnitude, assuming that lower sway magnitude reflects better performance. However, people do not typically minimize sway magnitude when performing a postural control task. Possibly, other criteria are satisfied when people select the amount of sway they do. Minimal metabolic cost has been suggested as such a criterion. The aim of this study was to experimentally test the relation between sway magnitude and metabolic cost to establish whether metabolic cost could be a potential optimization criterion in postural control. Nineteen healthy subjects engaged in two experiments in which different magnitudes of sway were evoked during upright standing on a foam surface while metabolic energy expenditure, center of pressure (CoP) excursion, and muscle activation were recorded. In one experiment, sway was manipulated by visual feedback of CoP excursion. The other experiment involved verbal instructions of standing still, natural or relaxed. In both experiments, metabolic cost changed with sway magnitude in an asymmetric parabolic fashion, with a minimum around self-selected sway magnitudes and a larger increase at small compared with large sway magnitudes. This metabolic response was paralleled by a change in tonic and phasic EMG activity in the major leg muscles. It is concluded that these results are in line with the notion that metabolic cost can be an optimization criterion used to set postural control and as such could account for the magnitude of naturally occurring postural sway in healthy individuals, although the pathway remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document