scholarly journals Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range

Cartilage ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Isaac Oluwaseun Afara ◽  
Sanjleena Singh ◽  
Hayley Moody ◽  
Lihai Zhang ◽  
Adekunle Oloyede

Objectives: In this study, we examine the capacity of a new parameter, based on the recovery response of articular cartilage, to distinguish between healthy and damaged tissues. We also investigate whether or not this new parameter correlates with the near-infrared (NIR) optical response of articular cartilage. Design: Normal and artificially degenerated (proteoglycan-depleted) bovine cartilage samples were nondestructively probed using NIR spectroscopy. Subsequently they were subjected to a load and unloading protocol, and the recovery response was logged during unloading. The recovery parameter, elastic rebound ( ER), is based on the strain energy released as the samples underwent instantaneous elastic recovery. Results: Our results reveal positive relationship between the rebound parameter and cartilage proteoglycan content (normal samples: 2.20 ± 0.10 N mm; proteoglycan-depleted samples: 0.50 ± 0.04 N mm for 1 hour of enzymatic treatment and 0.13 ± 0.02 N mm for 4 hours of enzymatic treatment). In addition, multivariate analysis using partial least squares regression was employed to investigate the relationship between ER and NIR spectral data. The results reveal significantly high correlation ( R2cal = 98.35% and R2val = 79.87%; P < 0.0001), with relatively low error (14%), between the recovery and optical response of cartilage in the combined NIR regions 5,450 to 6,100 cm−1 and 7,500 to 12,500 cm−1. Conclusion: We conclude that ER can indicate the mechanical condition and state of health of articular cartilage. The correlation of ER with cartilage optical response in the NIR range could facilitate real-time evaluation of the tissue’s integrity during arthroscopic surgery and could also provide an important tool for cartilage assessment in tissue engineering and regeneration research.

2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

&lt;p&gt;Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.&lt;/p&gt;&lt;p&gt;The study is performed in Mediterranean Croatia (44&amp;#176; 05&amp;#8217; N; 15&amp;#176; 22&amp;#8217; E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed &lt;em&gt;Quercus ssp.&lt;/em&gt; and &lt;em&gt;Juniperus ssp.&lt;/em&gt; forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22&lt;sup&gt;nd&lt;/sup&gt; 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31&lt;sup&gt;st&lt;/sup&gt; and September 5&lt;sup&gt;th &lt;/sup&gt;2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE&lt;sub&gt;p&lt;/sub&gt;) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.&lt;/p&gt;&lt;p&gt;The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE&lt;sub&gt;p &lt;/sub&gt;(Spectroscopy dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 1.91; Sentinel-2 dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; remote sensing, soil spectroscopy, wildfires, soil organic matter&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment: &lt;/strong&gt;This work was supported by the Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO). Aleksandra Per&amp;#269;in is acknowledged for her cooperation during the laboratory work.&lt;/p&gt;


2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

&lt;p&gt;Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40&amp;#176;C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec&amp;#174;3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation &amp;#8710;SOC&lt;sub&gt;obs&lt;/sub&gt;&lt;sub&gt;&lt;/sub&gt;obtained from observed values in 2013 and 2018 (&amp;#8710;SOC&lt;sub&gt;obs&lt;/sub&gt; = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R&amp;#178;= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed &amp;#8710;SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which &amp;#8710;SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.&lt;/p&gt;


2022 ◽  
pp. 096703352110572
Author(s):  
Nicholas T Anderson ◽  
Kerry B Walsh

Short wave near infrared (NIR) spectroscopy operated in a partial or full transmission geometry and a point spectroscopy mode has been increasingly adopted for evaluation of quality of intact fruit, both on-tree and on-packing lines. The evolution in hardware has been paralleled by an evolution in the modelling techniques employed. This review documents the range of spectral pre-treatments and modelling techniques employed for this application. Over the last three decades, there has been a shift from use of multiple linear regression to partial least squares regression. Attention to model robustness across seasons and instruments has driven a shift to machine learning methods such as artificial neural networks and deep learning in recent years, with this shift enabled by the availability of large and diverse training and test sets.


2008 ◽  
Vol 62 (10) ◽  
pp. 1129-1136 ◽  
Author(s):  
Liang Li ◽  
Qili Wu ◽  
Shanjun Li ◽  
Peiyi Wu

In this work, the isothermal curing process of diglycidyl ether of bisphenol A(DGEBA) cured with 4,4′-diaminodiphenylmethane (DDM) was monitored in situ by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. With the help of generalized two-dimensional (2D) correlation analysis, the results obtained showed that, during curing, the change of amine and epoxy groups was simultaneous, taking place prior to the change of hydroxyl groups, followed by the change of CH2/CH groups, resulting from the ring-opening reaction of epoxy groups. In addition, 2D MIR×NIR hetero-spectral correlation analysis and second-derivative analysis were also employed, by means of which direct evidence of the curing mechanism could be obtained and obscure NIR band assignments in the overlapped CH combination region could be made.


2001 ◽  
Vol 9 (2) ◽  
pp. 133-139 ◽  
Author(s):  
L.G. Thygesen ◽  
S.B. Engelsen ◽  
M.H. Madsen ◽  
O.B. Sørensen

A set of 97 potato starch samples with a phosphate content corresponding to a phosphorus content between 0.029 and 0.11 g per 100 g dry matter was analysed using a Rapid Visco Analyzer (RVA) and near infrared (NIR) spectroscopy, (700–2498 nm). NIR-based prediction of phosphate content was possible with a root mean square error of cross-validation ( RMSECV) of 0.006% using PLSR (partial least squares regression). However, the NIR/PLSR model relied on weak spectral signals, and was highly sensitive to sample preparation. The best prediction of phosphate content from the RVA viscograms was a linear regression model based on the RVA variable Breakdown, which gave a RMSECV of 0.008%. NIR/PLSR prediction of the RVA variables Peak viscosity and Breakdown was successful, probably because they were highly related to phosphate content in the present data. Prediction of the other RVA variables from NIR/PLSR was mediocre (Through, Final Viscosity) or not possible (Setback, Peak time, Pasting temperature).


2004 ◽  
Vol 34 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén ◽  
Tong Yun Shen

The use of near-infrared (NIR) spectroscopy to discriminate between uninfested seeds of Picea abies (L.) Karst and seeds infested with Plemeliella abietina Seitn (Hymenoptera, Torymidae) larva is sensitive to seed origin and year of collection. Five seed lots collected during different years from Sweden, Finland, and Belarus were used in this study. Initially, seeds were classified as infested or uninfested with X-radiography, and then, NIR spectra from single seeds were collected with a NIR spectrometer from 1100 to 2498 nm with a resolution of 2 nm. Discriminant models were derived by partial least squares regression using raw and orthogonal signal corrected spectra (OSC). The resulting OSC model developed on a pooled data set was more robust than the raw model and resulted in 100% classification accuracy. Once irrelevant spectral variations were removed by using OSC pretreatment, single-lot calibration models resulted in similar classification rates for the new samples irrespective of origin and year of collection. Dis criminant analyses performed with selected NIR absorption bands also gave nearly 100% classification rate for new samples. The origin of spectral differences between infested and uninfested seeds was attributed to storage lipids and proteins that were completely depleted in the former by the feeding larva.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


2019 ◽  
Vol 1 (2) ◽  
pp. 246-256
Author(s):  
Benjamaporn Matulaprungsan ◽  
Chalermchai Wongs-Aree ◽  
Pathompong Penchaiya ◽  
Phonkrit Maniwara ◽  
Sirichai Kanlayanarat ◽  
...  

Shredded cabbage is widely used in much ready-to-eat food. Therefore, rapid methods for detecting and monitoring the contamination of foodborne microbes is essential. Short wavelength near infrared (SW-NIR) spectroscopy was applied on two types of solutions, a drained solution from the outer surface of the shredded cabbage (SC) and a ground solution of shredded cabbage (GC) which were inoculated with a mixture of two bacterial suspensions, Escherichia coli and Salmonella typhimurium. NIR spectra of around 700 to 1100 nm were collected from the samples after 0, 4, and 8 h at 37 °C incubation, along with the growth of total bacteria, E. coli and S. typhimurium. The raw spectra were obtained from both sample types, clearly separated with the increase of incubation time. The first derivative, a Savitzky–Golay pretreatment, was applied on the GC spectra, while the second derivative was applied on the SC spectra before developing the calibration equation, using partial least squares regression (PLS). The obtained correlation (r) of the SC spectra was higher than the GC spectra, while the standard error of cross-validation (SECV) was lower. The ratio of prediction of deviation (RPD) of the SC spectra was higher than the GC spectra, especially in total bacteria, quite normal for the E. coli but relatively low for the S. typhimurium. The prediction results of microbial spoilage were more reliable on the SC than on the GC spectra. Total bacterial detection was best for quantitative measurement, as E. coli contamination could only be distinguished between high and low values. Conversely, S. typhimurium predictions were not optimal for either sample type. The SW-NIR shows the feasibility for detecting the existence of microbes in the solution obtained from SC, but for a more specific application for discrimination or quantitation is needed, proving further research in still required.


2017 ◽  
Vol 25 (5) ◽  
pp. 330-337 ◽  
Author(s):  
Latthika Wimonsiri ◽  
Pitiporn Ritthiruangdej ◽  
Sumaporn Kasemsumran ◽  
Nantawan Therdthai ◽  
Wasaporn Chanput ◽  
...  

This study has investigated the potential of near infrared (NIR) spectroscopy to predict the content of moisture, protein, fat and gluten in rice cookies in different sample forms (intact and milled samples). Gluten-free (n = 48) and gluten (n = 48) rice cookies were formulated with brown and white rice flours in which butter was substituted with fat replacer at 0, 15, 30 and 45%. With regard to gluten cookies, rice flour was substituted with wheat gluten at 1, 3 and 5%. Partial least squares regression modeling produced models with coefficient of determination (R2) values greater than 0.88 from NIR spectra of intact samples and greater than 0.92 for milled samples. These models were able to predict the four components with a ratio of prediction to deviation greater than 2.7 and 3.8 in intact and milled samples, respectively. The results suggest that the models obtained from the intact samples can be successfully applied for chemical composition of rice cookies and are reliable enough use for potential quality control programs.


Sign in / Sign up

Export Citation Format

Share Document