Quantification of Cartilage Surface Degeneration by Curvature Analysis Using 3D Scanning in a Rabbit Model

Cartilage ◽  
2021 ◽  
pp. 194760352110595
Author(s):  
Dawei Liang ◽  
Tomohiro Onodera ◽  
Masanari Hamasaki ◽  
Ryosuke Hishimura ◽  
Kentaro Homan ◽  
...  

Objective Accurate analysis to quantify cartilage morphology is critical for evaluating degenerative conditions in osteoarthritis (OA). Three-dimensional (3D) optical scanning provides 3D data for the entire cartilage surface; however, there is no consensus on how to quantify it. Our purpose was to validate a 3D method for evaluating spatiotemporal alterations in degenerative cartilages in a rabbit OA model by analyzing their curvatures at various stages of progression. Design Twelve rabbits underwent anterior cruciate ligament transection (ACLT) unilaterally and were divided into 4 groups: 4 weeks control, 4 weeks OA, 8 weeks control, and 8 weeks OA. 3D scanning, India ink staining, and histological assessments were performed in all groups. In 3D curvature visualization, the surfaces of the condyles were divided into 8 areas. The standard deviations (SD) of mean curvatures from all vertices of condylar surfaces and subareas were calculated. Results Regarding the site of OA change, curvature analysis was consistent with India ink scoring. The SD of mean curvature correlated strongly with the India ink Osteoarthritis Research Society International (OARSI) score. In curvature histograms, the curvature distribution in OA was more scattered than in control. Of the 8 areas, significant OA progression in the posterolateral part of the lateral condyle (L-PL) was observed at 4 weeks. The histology result was consistent with the 3D evaluation in terms of representative section. Conclusions This study demonstrated that 3D scanning with curvature analysis can quantify the severity of cartilage degeneration objectively. Furthermore, the L-PL was found to be the initial area where OA degeneration occurred in the rabbit ACLT model.

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 303
Author(s):  
Yuichiro Oka ◽  
Kenij Murata ◽  
Kaichi Ozone ◽  
Takuma Kano ◽  
Yuki Minegishi ◽  
...  

Cartilage degeneration is the main pathological component of knee osteoarthritis (OA), but no effective treatment for its control exists. Although exercise can inhibit OA, the abnormal joint movement with knee OA must be managed to perform exercise. Our aims were to determine how controlling abnormal joint movement and treadmill exercise can suppress cartilage degeneration, to analyze the tissues surrounding articular cartilage, and to clarify the effect of treatment. Twelve-week-old ICR mice (n = 24) underwent anterior cruciate ligament transection (ACL-T) surgery on their right knees and were divided into three groups as follows: ACL-T, animals in the walking group subjected to ACL-T; controlled abnormal joint movement (CAJM), and CAJM with exercise (CAJM + Ex) (n = 8/group). Walking-group animals were subjected to treadmill exercise 6 weeks after surgery, including walking for 18 m/min, 30 min/day, 3 days/week for 8 weeks. Safranin-O staining, hematoxylin-eosin staining, and immunohistochemical staining were performed. The OARSI (Osteoarthritis research Society international) score was lower in the CAJM group than in the ACL-T group and was even lower in the CAJM + Ex group. The CAJM group had a lower meniscal injury score than the ACL-T group, and the CAJM + Ex group demonstrated a less severe synovitis than the ACL-T and CAJM groups. The observed difference in the perichondrium tissue damage score depending on the intervention method suggests different therapeutic effects, that normalizing joint motion can solve local problems in the knee joint, and that the anti-inflammatory effect of treadmill exercise can suppress cartilage degeneration.


Cartilage ◽  
2020 ◽  
pp. 194760352092143
Author(s):  
Yiwen Hu ◽  
Qian Wu ◽  
Yang Qiao ◽  
Peng Zhang ◽  
Wentao Dai ◽  
...  

Objective This study aimed to assess the association between synovial fluid (SF) metabolites and magnetic resonance imaging (MRI) measurements of cartilage biochemical composition to identify potential SF biomarkers for detecting the early onset of cartilage degeneration in a rabbit model. Methods Both knees of 12 New Zealand White rabbits were used. The anterior cruciate ligament transection (ACLT) model was performed on right knees, and the sham surgery on left knees. MRI UTE-T2* scanning and SF sample collection were performed on ACLT knees at 4 and 8 weeks postsurgery and on sham surgery knees at 4 weeks postsurgery. Ultra-performance liquid chromatography–mass spectrometry and multivariate statistical analysis were used to distinguish samples in three groups. Pathway and receiver operating characteristic analyses were utilized to identify potential metabolite biomarkers. Results There were 12 knees in sham surgery models, 11 in ACLT models at 4 weeks postsurgery, and 10 in ACLT models at 8 weeks postsurgery. UTE-T2* values for the lateral tibia cartilage showed significant decreases over the study period. Levels of 103 identified metabolites in SF were markedly different among three groups. Furthermore, 24 metabolites were inversely correlated with UTE-T2* values of the lateral tibia cartilage, while hippuric acid was positively correlated with UTE-T2* values of the lateral tibia cartilage. Among 25 potential markers, N1-acetylspermidine, 2-amino-1,3,4-octadecanetriol, l-phenylalanine, 5-hydroxy-l-tryptophan, and l-tryptophan were identified as potential biomarkers with high area under the curve values and Pearson correlation coefficients. Conclusion Five differential metabolites in SF were found as potential biomarkers for the early detection of cartilage degeneration in the rabbit ACLT model.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Seongjae Choi ◽  
Jun-Hyung Kim ◽  
Jeongho Ha ◽  
Bo-Ing Jeong ◽  
Yun Chan Jung ◽  
...  

We investigated the effects of intra-articular injections of alginate-microencapsulated adipose tissue-derived mesenchymal stem cells (ASCs) during osteoarthritis (OA) development in a rabbit model of anterior cruciate ligament transection (ACLT). We induced OA in mature New Zealand white rabbits by bilateral ACLT. Stifle joints were categorised into four groups according to intra-articular injection materials. Alginate microbeads and microencapsulated ASCs were prepared using the vibrational nozzle technology. Two weeks after ACLT, the rabbits received three consecutive weekly intra-articular injections of 0.9% NaCl, alginate microbeads, ASCs, or microencapsulated ASCs, into each joint. Nine weeks after ACLT, we euthanised the rabbits and collected bilateral femoral condyles for macroscopic, histological, and immunohistochemical analyses. Macroscopic evaluation using the modified OA Research Society International (OARSI) score and total cartilage damage score showed that cartilage degradation on the femoral condyle was relatively low in the microencapsulated-ASC group. Histological analysis of the lateral femoral condyles indicated that microencapsulated ASCs had significant chondroprotective effects. Immunohistochemically, the expression of MMP-13 after the articular cartilage damage was relatively low in the microencapsulated-ASC-treated stifle joints. During the development of experimental OA, as compared to ASCs alone, intra-articular injection of microencapsulated ASCs significantly decreased the progression and extent of OA.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoharu Takagi ◽  
Tamon Kabata ◽  
Katsuhiro Hayashi ◽  
Xiang Fang ◽  
Yoshitomo Kajino ◽  
...  

Abstract Background Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model. Methods Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically. Results Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups. Conclusions Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.


Cartilage ◽  
2019 ◽  
pp. 194760351988500
Author(s):  
Yuichiro Oka ◽  
Kenji Murata ◽  
Takuma Kano ◽  
Kaichi Ozone ◽  
Kohei Arakawa ◽  
...  

Objective Moderate mechanical stress is necessary for preserving the cartilage. The clinician empirically understands that prescribing only exercise will progress osteoarthritis (OA) for knee OA patients with abnormal joint movement. When prescribing exercise for OA, we hypothesized that degeneration of articular cartilage could be further prevented by combining interventions with the viewpoint of normalizing joint movement. Design Twelve-week-old ICR mice underwent anterior cruciate ligament transection (ACL-T) surgery in their right knee and divided into 4 groups: ACL-T, controlled abnormal joint movement (CAJM), ACL-T with exercise (ACL-T/Ex), CAJM with exercise (CAJM/Ex). Animals in the walking group were subjected to treadmill exercise 6 weeks after surgery, which included walking for 18 m/min, 30 min/d, 3 d/wk for 4 weeks. Joint instability was measured by anterior drawer test, and safranin-O staining and immunohistochemical staining were performed. Results OARSI (Osteoarthritis Research Society International) score of ACL-T/Ex group showed highest among 4 groups ( P < 0.001). And CAJM/Ex group was lower than ACL-T/Ex group. Positive cell ratio of IL-1β and MMP-13 in CAJM/Ex group was lower than ACL-T/Ex group ( P < 0.05). Conclusions We found that the state of the intra-articular environment can greatly influence the effect of exercise on cartilage degeneration, even if exercise is performed under the same conditions. In the CAJM/Ex group where joint movement was normalized, abnormal mechanical stress such as shear force and compression force accompanying ACL cutting was alleviated. These findings may highlight the need to consider an intervention to correct abnormal joint movement before prescribing physical exercise in the treatment of OA.


2020 ◽  
Author(s):  
Tomoharu Takagi ◽  
Tamon Kabata ◽  
Katsuhiro Hayashi ◽  
Xiang Fang ◽  
Yoshitomo Kajino ◽  
...  

Abstract Background: Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model.Methods: Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically.Results: Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups.Conclusions: Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.


2015 ◽  
Vol 75 (9) ◽  
pp. 1714-1721 ◽  
Author(s):  
Zhuang Cui ◽  
Janet Crane ◽  
Hui Xie ◽  
Xin Jin ◽  
Gehua Zhen ◽  
...  

ObjectivesExamine whether osteoarthritis (OA) progression can be delayed by halofuginone in anterior cruciate ligament transection (ACLT) rodent models.Methods3-month-old male C57BL/6J (wild type; WT) mice and Lewis rats were randomised to sham-operated, ACLT-operated, treated with vehicle, or ACLT-operated, treated with halofuginone. Articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Immunostaining, flow cytometry, RT-PCR and western blot analyses were conducted to detect relative protein and RNA expression. Bone micro CT (μCT) and CT-based microangiography were quantitated to detect alterations of microarchitecture and vasculature in tibial subchondral bone.ResultsHalofuginone attenuated articular cartilage degeneration and subchondral bone deterioration, resulting in substantially lower OARSI scores. Specifically, we found that proteoglycan loss and calcification of articular cartilage were significantly decreased in halofuginone-treated ACLT rodents compared with vehicle-treated ACLT controls. Halofuginone reduced collagen X (Col X), matrix metalloproteinase-13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5) and increased lubricin, collagen II and aggrecan. In parallel, halofuginone-attenuated uncoupled subchondral bone remodelling as defined by reduced subchondral bone tissue volume, lower trabecular pattern factor (Tb.pf) and increased thickness of subchondral bone plate compared with vehicle-treated ACLT controls. We found that halofuginone exerted protective effects in part by suppressing Th17-induced osteoclastic bone resorption, inhibiting Smad2/3-dependent TGF-β signalling to restore coupled bone remodelling and attenuating excessive angiogenesis in subchondral bone.ConclusionsHalofuginone attenuates OA progression by inhibition of subchondral bone TGF-β activity and aberrant angiogenesis as a potential preventive therapy for OA.


2021 ◽  
Vol 10 (13) ◽  
pp. 2825
Author(s):  
Gianluca Vadalà ◽  
Luca Ambrosio ◽  
Caterina Cattani ◽  
Roberta Bernardini ◽  
Antonino Giacalone ◽  
...  

Cartilage neoangiogenesis holds a prominent role in osteoarthritis (OA) pathogenesis. This study aimed to assess the efficacy bevacizumab, an antibody against vascular endothelial growth factor and inhibitor of angiogenesis, in a rabbit OA model. Animals were divided into four groups: one receiving a sham intra-articular knee injection and three groups undergoing 5, 10, and 20 mg intra-articular bevacizumab injections. The effect of the antibody on articular cartilage and synovium was assessed through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemistry was performed to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression. Bevacizumab treatment led to a significant reduction of cartilage degeneration and synovial OA changes. Immunohistochemistry revealed significantly lower cartilage MMP-13 expression levels in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. The antibody also resulted in increased production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen, while aggrecan content was even higher than in the healthy cartilage. Intra-articular bevacizumab has been demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose.


Cartilage ◽  
2020 ◽  
pp. 194760352090536
Author(s):  
Pomme Boissier ◽  
Pierre Mainil-Varlet ◽  
Giuseppe R. Mautone

Objective This study aimed to test the hypothesis that administration of increasing doses of Sinovial (hyaluronic acid [HA]), would exhibit a dose-dependent effect on the prevention of cartilage degradation, without local and systemic toxicity. Methods Twenty-seven adult rabbits were subjected to anterior cruciate ligament transection (ACLT). Two Sinovial products containing HA concentrations of 1.6% and 2.4% were used as active treatment, and 0.9% saline was used as control and injected intra-articularly 7 days post ACLT. Radiographs were taken prior to surgery, at injection and sacrifice times. After euthanasia, 8 weeks postsurgery, knee joints were observed macroscopically using India ink staining with OARSI (Osteoarthritis Research Society International) scoring and histologically using modified Mankin scoring. The synovial membranes were analyzed using Cake classification. Results No intraoperative complications were observed. One week postinjection, 4 animals in the HA 2.4% group developed subcutaneous nodules that disappeared spontaneously. No inflammation of the synovial membrane was ever observed. The control group exhibited the maximum uptake of India ink 2.22 ± 0.14. HA groups exhibited a dose-dependent ( P = 0.02) reduction in India ink uptake: 1.75 ± 0.17 for HA 1.6% and 1.58 ± 0.14 for HA 2.4%. The most marked dose-dependent effect of this study was a reduction of modified Mankin score for HA groups, with the 2.4% treatment achieving a statistically significant improvement as compared with the control group (7.19 ± 0.85 for saline, 4.65 ± 0.66 for HA 1.6%, and 3.53 ± 0.59 for HA 2.4%; P = 0.005). Conclusions A dose-dependent protective effect on cartilage was observed after injection of both HA solutions.


Sign in / Sign up

Export Citation Format

Share Document