scholarly journals Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study

2020 ◽  
Vol 33 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Maria M D’Souza ◽  
Mukesh Kumar ◽  
Ajay Choudhary ◽  
Prabhjot Kaur ◽  
Pawan Kumar ◽  
...  

Aim In the present study, we aimed to characterise changes in functional brain networks in individuals who had sustained uncomplicated mild traumatic brain injury (mTBI). We assessed the progression of these changes into the chronic phase. We also attempted to explore how these changes influenced the severity of post-concussion symptoms as well as the cognitive profile of the patients. Methods A total of 65 patients were prospectively recruited for an advanced magnetic resonance imaging (MRI) scan within 7 days of sustaining mTBI. Of these, 25 were reassessed at 6 months post injury. Differences in functional brain networks were analysed between cases and age- and sex-matched healthy controls using independent component analysis of resting-state functional MRI. Results Our study revealed reduced functional connectivity in multiple networks, including the anterior default mode network, central executive network, somato-motor and auditory network in patients who had sustained mTBI. A negative correlation between network connectivity and severity of post-concussive symptoms was observed. Follow-up studies performed 6 months after injury revealed an increase in network connectivity, along with an improvement in the severity of post-concussion symptoms. Neurocognitive tests performed at this time point revealed a positive correlation between the functional connectivity and the test scores, along with a persistence of negative correlation between network connectivity and post-concussive symptom severity. Conclusion Our results suggest that uncomplicated mTBI is associated with specific abnormalities in functional brain networks that evolve over time and may contribute to the severity of post-concussive symptoms and cognitive deficits.

2017 ◽  
Vol 126 (3) ◽  
pp. 419-430 ◽  
Author(s):  
Javeria A. Hashmi ◽  
Marco L. Loggia ◽  
Sheraz Khan ◽  
Lei Gao ◽  
Jieun Kim ◽  
...  

Abstract Background A clear understanding of the neural basis of consciousness is fundamental to research in clinical and basic neuroscience disciplines and anesthesia. Recently, decreased efficiency of information integration was suggested as a core network feature of propofol-induced unconsciousness. However, it is unclear whether this finding can be generalized to dexmedetomidine, which has a different molecular target. Methods Dexmedetomidine was administered as a 1-μg/kg bolus over 10 min, followed by a 0.7-μg · kg−1 · h−1 infusion to healthy human volunteers (age range, 18 to 36 yr; n = 15). Resting-state functional magnetic resonance imaging data were acquired during baseline, dexmedetomidine-induced altered arousal, and recovery states. Zero-lag correlations between resting-state functional magnetic resonance imaging signals extracted from 131 brain parcellations were used to construct weighted brain networks. Network efficiency, degree distribution, and node strength were computed using graph analysis. Parcellated brain regions were also mapped to known resting-state networks to study functional connectivity changes. Results Dexmedetomidine significantly reduced the local and global efficiencies of graph theory–derived networks. Dexmedetomidine also reduced the average brain connectivity strength without impairing the degree distribution. Functional connectivity within and between all resting-state networks was modulated by dexmedetomidine. Conclusions Dexmedetomidine is associated with a significant drop in the capacity for efficient information transmission at both the local and global levels. These changes result from reductions in the strength of connectivity and also manifest as reduced within and between resting-state network connectivity. These findings strengthen the hypothesis that conscious processing relies on an efficient system of information transfer in the brain.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


Sign in / Sign up

Export Citation Format

Share Document