scholarly journals Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models

2020 ◽  
Vol 49 (5) ◽  
pp. 20190441 ◽  
Author(s):  
Hakan Amasya ◽  
Derya Yildirim ◽  
Turgay Aydogan ◽  
Nazan Kemaloglu ◽  
Kaan Orhan

Objectives: This study aimed to develop five different supervised machine learning (ML) classifier models using artificial intelligence (AI) techniques and to compare their performance for cervical vertebral maturation (CVM) analysis. A clinical decision support system (CDSS) was developed for more objective results. Methods: A total of 647 digital lateral cephalometric radiographs with visible C2, C3, C4 and C5 vertebrae were chosen. Newly developed software was used for manually labelling the samples, with the integrated CDSS developed by evaluation of 100 radiographs. On each radiograph, 26 points were marked, and the CDSS generated a suggestion according to the points and CVM analysis performed by the human observer. For each sample, 54 features were saved in text format and classified using logistic regression (LR), support vector machine, random forest, artificial neural network (ANN) and decision tree (DT) models. The weighted κ coefficient was used to evaluate the concordance of classification and expert visual evaluation results. Results: Among the CVM stage classifier models, the best result was achieved using the ANN model (κ = 0.926). Among cervical vertebrae morphology classifier models, the best result was achieved using the LR model (κ = 0.968) for the presence of concavity, and the DT model (κ = 0.949) for vertebral body shapes. Conclusions: This study has proposed ML models for CVM assessment on lateral cephalometric radiographs, which can be used for the prediction of cervical vertebrae morphology. Further studies should be done especially of forensic applications of AI models through CVM evaluations.

2021 ◽  
Vol 10 (22) ◽  
pp. 5330
Author(s):  
Francesco Paolo Lo Muzio ◽  
Giacomo Rozzi ◽  
Stefano Rossi ◽  
Giovanni Battista Luciani ◽  
Ruben Foresti ◽  
...  

The human right ventricle is barely monitored during open-chest surgery due to the absence of intraoperative imaging techniques capable of elaborating its complex function. Accordingly, artificial intelligence could not be adopted for this specific task. We recently proposed a video-based approach for the real-time evaluation of the epicardial kinematics to support medical decisions. Here, we employed two supervised machine learning algorithms based on our technique to predict the patients’ outcomes before chest closure. Videos of the beating hearts were acquired before and after pulmonary valve replacement in twelve Tetralogy of Fallot patients and recordings were properly labeled as the “unhealthy” and “healthy” classes. We extracted frequency-domain-related features to train different supervised machine learning models and selected their best characteristics via 10-fold cross-validation and optimization processes. Decision surfaces were built to classify two additional patients having good and unfavorable clinical outcomes. The k-nearest neighbors and support vector machine showed the highest prediction accuracy; the patients’ class was identified with a true positive rate ≥95% and the decision surfaces correctly classified the additional patients in the “healthy” (good outcome) or “unhealthy” (unfavorable outcome) classes. We demonstrated that classifiers employed with our video-based technique may aid cardiac surgeons in decision making before chest closure.


2022 ◽  
Vol 9 (1) ◽  
pp. 1-12
Author(s):  
Sipu Hou ◽  
Zongzhen Cai ◽  
Jiming Wu ◽  
Hongwei Du ◽  
Peng Xie

It is not easy for banks to sell their term-deposit products to new clients because many factors will affect customers’ purchasing decision and because banks may have difficulties to identify their target customers. To address this issue, we use different supervised machine learning algorithms to predict if a customer will subscribe a bank term deposit and then compare the performance of these prediction models. Specifically, the current paper employs these five algorithms: Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Neural Network. This paper thus contributes to the artificial intelligence and Big Data field with an important evidence of the best performed model for predicting bank term deposit subscription.


2019 ◽  
Vol 6 ◽  
pp. 237428951987308 ◽  
Author(s):  
Hooman H. Rashidi ◽  
Nam K. Tran ◽  
Elham Vali Betts ◽  
Lydia P. Howell ◽  
Ralph Green

Increased interest in the opportunities provided by artificial intelligence and machine learning has spawned a new field of health-care research. The new tools under development are targeting many aspects of medical practice, including changes to the practice of pathology and laboratory medicine. Optimal design in these powerful tools requires cross-disciplinary literacy, including basic knowledge and understanding of critical concepts that have traditionally been unfamiliar to pathologists and laboratorians. This review provides definitions and basic knowledge of machine learning categories (supervised, unsupervised, and reinforcement learning), introduces the underlying concept of the bias-variance trade-off as an important foundation in supervised machine learning, and discusses approaches to the supervised machine learning study design along with an overview and description of common supervised machine learning algorithms (linear regression, logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, random forest, convolutional neural networks).


Author(s):  
József Dr. Menyhárt ◽  
Joao Henrique Gomes Da Costa Cavalcanti

Artificial intelligence is becoming a powerful tool of modernity science, there is even a science consensus about how our society is turning to a data-driven society. Machine learning is a branch of Artificial intelligence that has the ability to learn from data and understand its behavers. Python programming language aiming the challenges of this new era is becoming one of the most popular languages for general programming and scientific computing. Keeping all this new era circumstances in mind, this article has as a goal to show one example of how to use one supervised machine learning method, Support Vector Machine, and to predict movie’s genre according to its description using the programming language of the moment, python. Firstly, Omdb official API was used to gather data about movies, then tuned Support Vector Machine model for Latent semantic indexing capable of predicting movies genres according to its plot was coded. The performance of the model occurred to be satisfactory considering the small dataset used and the occurrence of movies with hybrid genres. Testing the model with larger dataset and using multi-label classification models were purposed to improve the model.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3827
Author(s):  
Gemma Urbanos ◽  
Alberto Martín ◽  
Guillermo Vázquez ◽  
Marta Villanueva ◽  
Manuel Villa ◽  
...  

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeon-Kyu Park ◽  
Jae-Hyeok Lee ◽  
Jehyun Lee ◽  
Sang-Koog Kim

AbstractThe macroscopic properties of permanent magnets and the resultant performance required for real implementations are determined by the magnets’ microscopic features. However, earlier micromagnetic simulations and experimental studies required relatively a lot of work to gain any complete and comprehensive understanding of the relationships between magnets’ macroscopic properties and their microstructures. Here, by means of supervised learning, we predict reliable values of coercivity (μ0Hc) and maximum magnetic energy product (BHmax) of granular NdFeB magnets according to their microstructural attributes (e.g. inter-grain decoupling, average grain size, and misalignment of easy axes) based on numerical datasets obtained from micromagnetic simulations. We conducted several tests of a variety of supervised machine learning (ML) models including kernel ridge regression (KRR), support vector regression (SVR), and artificial neural network (ANN) regression. The hyper-parameters of these models were optimized by a very fast simulated annealing (VFSA) algorithm with an adaptive cooling schedule. In our datasets of randomly generated 1,000 polycrystalline NdFeB cuboids with different microstructural attributes, all of the models yielded similar results in predicting both μ0Hc and BHmax. Furthermore, some outliers, which deteriorated the normality of residuals in the prediction of BHmax, were detected and further analyzed. Based on all of our results, we can conclude that our ML approach combined with micromagnetic simulations provides a robust framework for optimal design of microstructures for high-performance NdFeB magnets.


Sign in / Sign up

Export Citation Format

Share Document