scholarly journals T Cell Assessment in Allergic Drug Reactions during the Acute Phase According to the Time of Occurrence

2006 ◽  
Vol 19 (1) ◽  
pp. 205873920601900 ◽  
Author(s):  
M.J. Torres ◽  
C. Mayorga ◽  
T.D. Fernández ◽  
J.A. Cornejo-García ◽  
C. Antúnez ◽  
...  

Allergic drug reactions can be classified as immediate, accelerated or delayed. This classification usually correlates with the mechanism involved: immediate reactions are IgE mediated and delayed reactions are T cell dependent. We analyzed lymphocyte involvement in patients with these reactions by determining cell subpopulations, activation state and skin homing receptor expression (CLA) in blood and skin. Patients with immediate, accelerated and delayed reactions were evaluated during the acute phase and after resolution. Controls taking drugs were included. Phenotypic immunofluorescence analysis was done by flow cytometry in peripheral blood, and by immunohistochemistry in skin for delayed reactions. Forty-six patients were included, 17 with immediate reactions, 10 accelerated and 19 delayed. At the acute phase CLA was significantly increased in delayed reactions and HLA-DR in all three types of reaction. In the severest delayed reactions, Steven-Johnson/Lyell syndromes, the CD4 subsets were increased in peripheral blood and skin compared to maculopapular exanthemas and urticaria and HLA-DR when compared with urticaria. In maculopapular exanthemas CLA was significantly increased in peripheral blood and skin compared to urticaria and the severe reactions. We found that T-cells are implicated, besides delayed reactions, in immediate and accelerated reactions. In delayed reactions there is a parallelism between results found in skin and peripheral blood with a higher participation of CD4+ cells the more severe the reaction.

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Roger M Krzyzewski ◽  
Magdalena K Stachura ◽  
Mariusz Krupa ◽  
Rafal Morga ◽  
Agnieszka Sagan ◽  
...  

Introduction: Recently the role of adaptive immunity has been implied by microarray studies. But the results are contradictory. T-cell infiltration is a frequent histological finding in ruptured IA, T-cell phenotype, characteristic and true quantitation remains unknown. We preformed a prospective study to determine the subpopulation and expression of activation markers of T-cells infiltrating ruptured IA in relation to peripheral blood. Hypothesis: IA have different subsets and activation levels of T-cells than peripheral blood. Methods: We collected the tissue of ruptured IA of 8 patients operated on within 24 hours after subarachnoid hemorrhage symptoms onset. IA tissue was digested, stained with fluorescently labeled monoclonal antibodies and submitted to flow cytometry. In addition we collected and analyzed venous blood from 6 age, sex and risk factor-matched controls. Results: CD4+ cells are less prevalent in IA tissue than in peripheral blood (42.14±17.28 vs. 65.88±5.32%; p=0.011), while there was no difference in CD8+ T-cells infiltrating IA (30.28±9.07 vs. 27.78±5.45%; p=0.585), and double negative (CD4-CD8-CD3+) T-cells were more prevalent in wall of IA than in circulation, (15.68±11.94 vs. 2.81±1.32%; p=0.026). Importantly, CD4+ infiltrating IA wall showed higher expression of HLA-DR (25.9±6.42 vs. 9.19± 3.58%; p<0.001) higher expression of CD 69 (26.8±19.66 vs. 2.73±0.93%; p=0.014). Similarly, there significantly more CD8+ cells showed HLA-DR+ in the IA than in blood. (45.96±15.57 vs. 22.47±11.46%; p=0.018) and CD69 (30.32±22.73 vs. 5.03±1.55%; p=0.022). Double negative cells in IA also had higher expression of HLA-DR (46.56±21.40 vs. 22.58±5.1%; p=0.025), CD69 (31.05±16.79 vs. 7.83±2.05%; p=0.016). Conclusion: The tissue of ruptured IA is highly infiltrated by T-cells which show high expression of activation markers such as CD69 or HLA-DR. The importance of these cells to immunopathogenesis of intracranial aneurysm rupture should be further characterized.


1990 ◽  
Vol 171 (6) ◽  
pp. 1981-1999 ◽  
Author(s):  
S Kyoizumi ◽  
M Akiyama ◽  
Y Hirai ◽  
Y Kusunoki ◽  
K Tanabe ◽  
...  

The TCR/CD3 complex plays a central role in antigen recognition and activation of mature T cells, and, therefore, abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of the surface TCR/CD3 expression among human mature CD4+ T cells. The presence of variant CD4+ T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T cell dysfunction.


1980 ◽  
Vol 8 (2) ◽  
pp. 185-189 ◽  
Author(s):  
J. D. Beck ◽  
N. Wollner ◽  
D. R. Miller ◽  
R. A. Good ◽  
S. Gupta

1983 ◽  
Vol 157 (2) ◽  
pp. 743-754 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
J C Cerottini ◽  
M C Mingari

In an attempt to determine the clonogenic properties of human peripheral blood T cells, we have developed a limiting dilution microculture system using phytohemagglutinin (PHA) as T cell activator and supernatant from PHA-stimulated spleen cultures as a source of T cell growth factors. The frequencies of cells capable of extensive proliferation under these culture conditions were 0.52-0.73, 0.98-1.11, and less than 0.02 in peripheral blood mononuclear, E-rosette-positive, and E-rosette-negative cell populations, respectively. The clonogenic potential of virtually all T cells was confirmed in experiments using single cells isolated by micromanipulation. Clone size ranged between 5 and 30 X 10(4) cells on day 14 of culture. The same microculture system was used to determine the precursor frequency of all cytolytic T lymphocytes (CTL-P). As assessed by a lectin-dependent 51Cr release assay, the CTL-P frequency in purified T cell populations ranged between 0.30 and 0.34. In comparison, the precursor frequency of T cells capable of lysing K562 target cells was ranging between 0.14 and 0.16. Parallel analysis of individual clonal cultures for both lytic activities showed that 50% of the clones exhibiting lectin-dependent lysis were also active against K562 target cells. All of the proliferating clones expressed HLA-DR antigens, although to a varying degree as assessed by flow cytofluorometry. Given the high cloning efficiency of this culture system, it appears now possible to determine the precursor frequencies of the various classes of functional cells in T cell populations.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 808-808
Author(s):  
Yi Lin ◽  
Peggy A Bulur ◽  
Michael P. Gustafson ◽  
Thomas E. Witzig ◽  
Allan B. Dietz

Abstract Despite advances in treatments for patients with non-Hodgkin’s lymphoma (NHL), the relapse rates remain high and 40% of diffuse large B-cell NHL (DLBCL) patients die of disease. New therapies to augment the host anti-tumor immune response are needed. Reports of graft-versus-lymphoma responses in patients who have received allogeneic hematopoietic cell transplant indicate a role for cellular immunotherapy. However, these patients have variable levels of immunodeficiency which may impact the efficacy of cellular therapy. To study this we first evaluated the cellular immune status of patients with relapsed NHL. Proliferation of peripheral blood mononuclear cells (PBMNC) stimulated with anti-CD3/CD28 beads was reduced by more than 3.5 folds for patients with DLBCL (n = 3) compared to that of age-matched healthy donors (n = 5; p = 0.02). Removal of monocytes from PBMNC by use of anti-CD14 immunomagnetic beads restored proliferation to that of healthy donors. Further, monocytes from these patients were deficient in stimulating allogeneic T cell proliferation by 3 folds compared to monocytes from healthy donors (n = 3 NHL; n = 8 normal; p < 0.01). Peripheral blood from 12 NHL patients (9 DLBCL; 1 grade 3 follicular lymphoma; 2 composite) and 12 age-matched healthy donors were characterized by flow cytometry to determine the phenotype of these suppressive monocytes. There was no difference in the % monocytes in the blood between NHL patients and healthy donors; however, NHL patients had elevated % monocytes with a suppressive phenotype (CD14+HLA-DRneg) compared to normals (NHL 38.9 ± 4.93%; normal 8.3 ± 2.15; p < 0.0001). This phenotype is distinct from other myeloid suppressors (Lin-CD33+HLA-DR-) or non-classical monocytes (CD16+), neither of which was different in numbers between NHL and normal donors. This suggests that the CD14+HLA-DRneg monocytes are responsible for the observed T cell suppression. To further characterize the function of these cells, we cultured purified CD14+ monocytes from NHL and compared their differentiation capacity with those from normal donors. The percentage of CD14+HLA-DRneg monocytes in initial ex vivo culture was inversely correlated with the percentage of pure, mature dendritic cells (mDC) generated with TNF-a and PGE2 as maturation factors (CD80+CD83+; n = 9; p = 0.015). As CpG oligonucleotides are also capable of immune stimulation and have some anti-tumor activity in clinical trials, we investigated the effect of CpG on mDC differentiation in NHL. In healthy donors, maturation of monocytes with CpG yielded highly pure mDC (90.7 ± 2.15%, n = 3). However, preliminary results of mDC yield from monocytes of NHL patients matured with CpG was only 22.6 ± 11.2% (n = 2). This data suggests alternative signaling pathways of these suppressive monocytes. Preliminary analysis of a proteome array for 46 kinase phosphorylation sites from 37 proteins in 2 NHL and 3 healthy donors suggest changes in phosphorylation of 17 protein kinases for CD14+HLA-DRneg compared to CD14+HLA-DR+ cells. Functional correlation of these protein kinase phosphorylation changes is needed to definitively target the pathway characteristic of CD14+HLA-DRneg monocytes. Finally, we have identified a serum-free culture method that can consistently generate highly pure mDC from monocytes of NHL patients (93.0 ± 3.6%, n = 9) and is readily adaptable to good manufacturing practice for clinical use in immunotherapy. Taken together we have described for the first time a population of CD14+HLA-DRneg monocytes that is a significant source of immunosuppression in NHL patients and are beginning to target methods of overcoming this suppression.


Sign in / Sign up

Export Citation Format

Share Document