scholarly journals Efficacy of Berberine Alone and in Combination for the Treatment of Hyperlipidemia: A Systematic Review

2017 ◽  
Vol 22 (4) ◽  
pp. 956-968 ◽  
Author(s):  
Laura M. Koppen ◽  
Andrea Whitaker ◽  
Audrey Rosene ◽  
Robert D. Beckett

The objective of this review is to identify, summarize, and evaluate clinical trials of berberine for the treatment of hyperlipidemia and other dyslipidemias. A literature search for randomized, controlled trials of berberine that assessed at least 2 lipid values as endpoints resulted in identification of 12 articles that met criteria. The majority of evaluated articles consistently suggest that berberine has a beneficial effect on low-density lipoprotein (reductions ranging from approximately 20 to 50 mg/dL) and triglycerides (reductions ranging from approximately 25 to 55 mg/dL). Common study limitations included lack of reporting of precision in their endpoints, description of blinding, transparency in flow of patients, and reporting of baseline concomitant medications. Berberine could serve as an alternative for patients who are intolerant to statins, patients resistant to starting statin therapy but who are open to alternative treatments, and for low-risk patients not indicated for statin therapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tannaz Jamialahmadi ◽  
Fatemeh Baratzadeh ◽  
Željko Reiner ◽  
Luis E. Simental-Mendía ◽  
Suowen Xu ◽  
...  

Background. Elevated plasma low-density lipoprotein cholesterol (LDL-C) is the main risk factor for atherosclerotic cardiovascular disease (ASCVD). Statins are the drugs of choice for decreasing LDL-C and are used for the prevention and management of ASCVD. Guidelines recommend that subjects with high and very high ASCVD risk should be treated with high-intensity statins or a combination of high-intensity statins and ezetimibe. The lipophilicity or hydrophilicity (solubility) of statins is considered to be important for at least some of their LDL-C lowering independent pleiotropic effects. Oxidative modification of LDL (ox-LDL) is considered to be the most important atherogenic modification of LDL and is supposed to play a crucial role in atherogenesis and ASCVD outcomes. Objective. The aim of this systematic review and meta-analysis was to find out what are the effects of statin intensity, lipophilicity, and combination of statins plus ezetimibe on ox-LDL. Methods. PubMed, Scopus, Embase, and Web of Science were searched from inception to February 5, 2021, for randomized controlled trials (RCTs). Two independent and blinded authors evaluated eligibility by screening the titles and abstracts of the studies. Risk of bias in the studies included in this meta-analysis was evaluated according to the Cochrane instructions. Meta-analysis was performed using Comprehensive Meta-Analysis (CMA) V2 software. Evaluation of funnel plot, Begg’s rank correlation, and Egger’s weighted regression tests were used to assess the presence of publication bias. Results. Among the 1427 published studies identified by a systematic databases search, 20 RCTs were finally included in the systematic review and meta-analysis. A total of 1874 patients are included in this meta-analysis. This meta-analysis suggests that high-intensity statin treatment is associated with a significant decrease in circulating concentrations of ox-LDL when compared with low-to-moderate treatment (SMD: -0.675, 95% CI: -0.994, -0.357, p < 0.001 ; I 2 : 55.93%). There was no difference concerning ox-LDL concentration between treatments with hydrophilic and lipophilic statins (SMD: -0.129, 95% CI: -0.330, -0.071, p = 0.206 ; I 2 : 45.3%), but there was a significant reduction in circulating concentrations of ox-LDL associated with statin plus ezetimibe combination therapy when compared with statin monotherapy (SMD: -0.220, 95% CI: -0.369, -0.071, p = 0.004 ; I 2 : 0%). Conclusion. High-dose statin or combination of statins with ezetmibe reduces plasma ox-LDL in comparison low-to-moderate intensity statin therapy alone. Statin lipophilicity is not associated with reduction in ox-LDL plasma concentrations.


2006 ◽  
Vol 26 (5) ◽  
pp. 523-539 ◽  
Author(s):  
Sabin Shurraw ◽  
Marcello Tonelli

Dyslipidemia is a potent cardiovascular (CV) risk factor in the general population. Elevated low-density lipoprotein cholesterol (LDL-C) and/or low high-density lipoprotein (HDL-C) are well-established CV risk factors, but more precise determinants of risk include increased apoprotein B (ApoB), lipoprotein(a) [Lp(a)], intermediate and very low-density lipoprotein (IDL-C, VLDL-C; “remnant particles”), and small dense LDL particles. Lipoprotein metabolism is altered in association with declining glomerular filtration rate such that patients with non dialysis-dependent chronic kidney disease (CKD) have lower levels of HDL-C, higher triglyceride, ApoB, remnant IDL-C, remnant VLDL-C, and Lp(a), and a greater proportion of oxidized LDL-C. Similar abnormalities are prevalent in hemodialysis (HD) patients, who often manifest proatherogenic changes in LDL-C in the absence of increased levels. Patients treated with peritoneal dialysis (PD) have a similar but more severe dyslipidemia compared to HD patients due to stimulation of hepatic lipoprotein synthesis by glucose absorption from dialysate, increased insulin levels, and selective protein loss in the dialysate analogous to the nephrotic syndrome. In the dialysis-dependent CKD population, total cholesterol is directly associated with increased mortality after controlling for the presence of malnutrition–inflammation. Treatment with statins reduces CV mortality in the general population by approximately one third, irrespective of baseline LDL-C or prior CV events. Statins have similar, if not greater, efficacy in altering the lipid profile in patients with dialysis-dependent CKD (HD and PD) compared to those with normal renal function, and are well tolerated in CKD patients at moderate doses (≤ 20 mg/day atorvastatin or simvastatin). Statins reduce C-reactive protein as well as lipid moieties such as ApoB, remnants IDL and VLDL-C, and oxidized and small dense LDL-C fraction. Large observational studies demonstrate that statin treatment is independently associated with a 30% – 50% mortality reduction in patients with dialysis-dependent CKD (similar between HD- and PD-treated patients). One recent randomized controlled trial evaluated the ability of statin treatment to reduce mortality in type II diabetics treated with HD (“4D”); the primary end point of death from cardiac cause, myocardial infarction, and stroke was not significantly reduced. However, results of this trial may not apply to other end-stage renal disease populations. Two ongoing randomized controlled trials (SHARP and AURORA) are underway evaluating the effect of statins on CV events and death in patients with CKD (including patients treated with HD and PD). Recruitment to future trials should be given a high priority by nephrologists and, until more data are available, consideration should be given to following published guidelines for the treatment of dyslipidemia in CKD. Additional consideration could be given to treating all dialysis patients felt to be at risk of CV disease (irrespective of cholesterol level), given the safety and potential efficacy of statins. This is especially relevant in patients treated with PD, given their more atherogenic lipid profile and the lack of randomized controlled trials in this population.


Sign in / Sign up

Export Citation Format

Share Document