scholarly journals Knee Bone Age using MRI: Validation of a Novel Method to Reduce Hand Bone Age Radiographs

2020 ◽  
Vol 8 (7_suppl6) ◽  
pp. 2325967120S0045
Author(s):  
Blake Meza ◽  
Scott LaValva ◽  
Julien Aoyama ◽  
Christopher DeFrancesco ◽  
Brendan Striano ◽  
...  

Objectives: Determining bone age in skeletally immature patients is critical for proper management and surgical planning. Pennock et al. recently created and validated a bone age atlas using the ossification pattern of the knee on MRI in pediatric patients, obfuscating the need for a hand radiograph and its associated cost, radiation exposure, and clinical inefficiency. This aim of this study was to create and validate a shorthand method of bone age determination using knee MRI. Methods: We identified patients who underwent both knee MRI and hand bone age radiograph within a ninety-day period. From the findings of Pennock et al., a stepwise algorithm for predicting bone age on knee MRI was developed for males and females separately, in collaboration with a pediatric musculoskeletal radiologist. Six raters at varying levels of training used the algorithm to assign a bone age to each knee MRI. Intraclass correlation coefficient (ICC) was used to compare each rater’s predicted knee bone age to the Greulich and Pyle (G&P) hand bone age and validate the shorthand algorithm. Inter- (two-way random, absolute agreement) and intra-rater (two-way mixed, absolute agreement ) reliability were also calculated using ICC. Results: Thirty-eight patients (44.7% females) underwent a knee MRI at a mean age of 12.8 years (range 9.3-15.7). The mean time between hand bone age x-ray and knee MRI was 20.2 days (range 0-88). The inter-rater reliability for the application of our shorthand algorithm was 0.81 (95% CI: 0.72 – 0.88), indicating good inter-observer agreement. The shorthand algorithm was also shown to be a reliable predictor of hand bone age across level of training, as medical students (ICC 0.77, 95% CI 0.60-0.88), residents (ICC 0.80, 95% CI 0.65-0.89), and attending physicians (ICC 0.80, 95% CI 0.63-0.89) all achieved strong correlation between predicted knee bone age and G&P hand bone age. All respondents also demonstrated consistency, with intra-rater ICCs between 0.85-0.93. Conclusion: This shorthand algorithm is a consistent, reliable and valid way to determine skeletal maturity using knee MRI in patients aged 10 to 15 and can be utilized across different levels of orthopaedic and radiographic expertise. We believe this method is readily applicable in a clinical setting and may reduce the need for routine hand bone age radiographs. [Figure: see text][Table: see text]

2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0018
Author(s):  
Blake C. Meza ◽  
Scott M. LaValva ◽  
Christopher J. DeFrancesco ◽  
Brendan M. Striano ◽  
Julien T. Aoyama ◽  
...  

Background: Determining bone age in skeletally immature patients is critical for proper management and surgical planning. Pennock et al. recently created and validated a bone age atlas using the ossification pattern of the knee on MRI in pediatric patients, obfuscating the need for a hand radiograph and its associated cost, radiation exposure, and clinical inefficiency. Hypothesis/Purpose: We sought to validate and demonstrate reliability of a novel shorthand method of bone age determination using knee MRI across multiple levels of medical training. Methods: We identified patients who underwent knee MRI and hand bone age radiograph within a ninety-day period. In collaboration with a pediatric musculoskeletal radiologist, stepwise algorithms for predicting bone age on knee MRI were developed- one for males and one for females. Six raters at varying levels of training used the algorithm to assign a bone age for each patient. Intraclass correlation coefficient (ICC) was used to compare each rater’s predicted knee bone age to the Greulich and Pyle (G&P) hand bone age and validate the shorthand algorithm. Inter-rater reliability was also calculated using ICC. Results: Thirty-eight patients (44.7% female) underwent a knee MRI at a mean age of 12.8 years (range 9.3-15.7). The mean time between hand bone age x-ray and knee MRI was 20.2 days (range 0-88). The inter-rater reliability for the application of our shorthand algorithm was 0.81 (95% CI: 0.72 – 0.88), indicating good inter-observer agreement. The shorthand methos was shown to be a good predictor of G&P hand bone age, both for each individual rater (ICC range: 0.73 – 0.80) and the mean knee MRI bone age across all raters (ICC 0.81; 95% CI 0.65 – 0.90). It was also shown to be a consistent predictor of hand bone age across level of training, as medical students (ICC 0.77, 95% CI 0.60-0.88), residents (ICC 0.80, 95% CI 0.65-0.89), and attending physicians (ICC 0.80, 95% CI 0.63-0.89) all achieved strong correlation between predicted knee MRI bone age and G&P hand bone age. Conclusions: This novel shorthand algorithm is a reliable and valid way to determine skeletal maturity using knee MRI. It can be utilized clinically across different levels of radiographic and orthopaedic expertise and reduces the need for hand bone age radiographs and consequential radiation exposure in children. [Figure: see text][Figure: see text][Table: see text]


2021 ◽  
Vol 9 (8) ◽  
pp. 232596712110215
Author(s):  
Blake C. Meza ◽  
Scott M. LaValva ◽  
Julien T. Aoyama ◽  
Christopher J. DeFrancesco ◽  
Brendan M. Striano ◽  
...  

Background: Bone-age determination remains a difficult process. An atlas for bone age has been created from knee-ossification patterns on magnetic resonance imaging (MRI), thereby avoiding the need for radiographs and associated costs, radiation exposure, and clinical inefficiency. Shorthand methods for bone age can be less time-consuming and require less extensive training as compared with conventional methods. Purpose: To create and validate a novel shorthand algorithm for bone age based on knee MRIs that could correlate with conventional hand bone age and demonstrate reliability across medical trainees. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Included in this study were adolescent patients who underwent both knee MRI and hand bone age radiographs within 90 days between 2009 and 2018. A stepwise algorithm for predicting bone age using knee MRI was developed separately for male and female patients, and 7 raters at varying levels of training used the algorithm to determine the bone age for each MRI. The shorthand algorithm was validated using Spearman rho ( rS) to correlate each rater’s predicted MRI bone age with the recorded Greulich and Pyle (G&P) hand bone age. Interrater and intrarater reliability were also calculated using intraclass correlation coefficients (ICCs). Results: A total of 38 patients (44.7% female) underwent imaging at a mean age of 12.8 years (range, 9.3-15.7 years). Shorthand knee MRI bone age scores were strongly correlated with G&P hand bone age ( rS = 0.83; P < .001). The shorthand algorithm was a valid predictor of G&P hand bone age regardless of level of training, as medical students ( rS = 0.75), residents ( rS = 0.81), and attending physicians ( rS = 0.84) performed similarly. The interrater reliability of our shorthand algorithm was 0.81 (95% CI, 0.73-0.88), indicating good to excellent interobserver agreement. Respondents also demonstrated consistency, with 6 of 7 raters demonstrating excellent intrarater reliability (median ICC, 0.86 [range, 0.68-0.96]). Conclusion: This shorthand algorithm is a consistent, reliable, and valid way to determine skeletal maturity using knee MRI in patients aged 9 to 16 years and can be utilized across different levels of orthopaedic and radiographic expertise. This method is readily applicable in a clinical setting and may reduce the need for routine hand bone age radiographs.


2022 ◽  
Vol 93 ◽  
pp. 222-228
Author(s):  
Anne Berg Breen ◽  
Harald Steen ◽  
Are Pripp ◽  
Ragnhild Gunderson ◽  
Hilde Kristine Sandberg Mentzoni ◽  
...  

Background and purpose — Skeletal maturity is a crucial parameter when calculating remaining growth in children. We compared 3 different methods, 2 manual and 1 automated, in the radiological assessment of bone age with respect to precision and systematic difference. Material and methods — 66 simultaneous examinations of the left hand and left elbow from children treated for leg-length discrepancies were randomly selected for skeletal age assessment. The radiographs were anonymized and assessed twice with at least 3 weeks’ interval according to the Greulich and Pyle (GP) and Sauvegrain (SG) methods by 5 radiologists with different levels of experience. The hand radiographs were also assessed for GP bone age by use of the automated BoneXpert (BX) method for comparison. Results — The inter-observer intraclass correlation coefficient (ICC) was 0.96 for the GP and 0.98 for the SG method. The inter- and intra-observer standard error of the measurement (SEm) was 0.41 and 0.32 years for the GP method and 0.27 and 0.21 years for the SG method with a significant difference (p < 0.001) between the methods and between the experienced and the less experienced radiologists for both methods (p = 0.003 and p < 0.001). In 25% of the assessments the discrepancy between the GP and the SG methodwas > 1 year. There was no systematic difference comparing either manual method with the automatic BX method. Interpretation — With respect to the precision of skeletal age determination, we recommend using the SG method or preferably the automated BX method based on GP assessments in the calculation of remaining growth.


2021 ◽  
pp. 036354652110329
Author(s):  
Cary S. Politzer ◽  
James D. Bomar ◽  
Hakan C. Pehlivan ◽  
Pradyumna Gurusamy ◽  
Eric W. Edmonds ◽  
...  

Background: In managing pediatric knee conditions, an accurate bone age assessment is often critical for diagnostic, prognostic, and treatment purposes. Historically, the Greulich and Pyle atlas (hand atlas) has been the gold standard bone age assessment tool. In 2013, a shorthand bone age assessment tool based on this atlas (hand shorthand) was devised as a simpler and more efficient alternative. Recently, a knee magnetic resonance imaging (MRI) bone age atlas (MRI atlas) was created to circumvent the need for a left-hand radiograph. Purpose: To create a shorthand version of the knee MRI atlas. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: A shorthand bone age assessment method was created utilizing the previously published MRI atlas, which utilizes several criteria that are visualized across a series of images. The MRI shorthand draws on characteristic criteria for each age that are best observed on a single MRI scan. For validation, we performed a retrospective assessment of skeletally immature patients. One reader performed the bone age assessment using the MRI atlas and the MRI shorthand on 200 patients. Then, 4 readers performed the bone age assessment with the hand atlas, hand shorthand, MRI atlas, and MRI shorthand on a subset of 22 patients in a blinded fashion. All 22 patients had a knee MRI scan and a left-hand radiograph within 4 weeks of each other. Interobserver and intraobserver reliability, as well as variability among observers, were evaluated. Results: A total of 200 patients with a mean age of 13.5 years (range, 9.08-17.98 years) were included in this study. Also, 22 patients with a mean age of 13.3 years (range, 9.0-15.6 years) had a knee MRI scan and a left-hand radiograph within 4 weeks. The intraobserver and interobserver reliability of all 4 assessment tools were acceptable (intraclass correlation coefficient [ICC] ≥ 0.8; P < .001). When comparing the MRI shorthand with the MRI atlas, there was excellent agreement (ICC = 0.989), whereas the hand shorthand compared with the hand atlas had good agreement (ICC = 0.765). The MRI shorthand also had perfect agreement in 50% of readings among all 4 readers, and 95% of readings had agreement within 1 year, whereas the hand shorthand had perfect agreement in 32% of readings and 77% agreement within 1 year. Conclusion: The MRI shorthand is a simple and efficient means of assessing the skeletal maturity of adolescent patients with a knee MRI scan. This bone age assessment technique had interobserver and intraobserver reliability equivalent to or better than the standard method of utilizing a left-hand radiograph.


2018 ◽  
Vol 12 (1) ◽  
pp. 84-90 ◽  
Author(s):  
M. R. Garcia ◽  
A. D. Nicholson ◽  
A. M. Nduaguba ◽  
J. O. Sanders ◽  
R. W. Liu ◽  
...  

Purpose There are multiple skeletal maturity grading systems, but none of them utilizes the phalanges of the foot. To minimize radiation, it would be ideal if one could assess the skeletal maturity of a foot based on bones seen on routine foot radiographs, if guided growth is being considered as a treatment option. We developed a system that correlates changes of the appearance of the foot phalanges to peak height velocity (PHV) and the recently described calcaneal apophyseal ossification grading system. Methods We selected 94 children from the Bolton-Brush study, each with consecutive radiographs from age ten to 15 years old. Using the anteroposterior view, we analyzed the ossification patterns of the phalanges and developed a six-stage system. We then determined the PHV for each subject and defined its relationship with our system. Our system was then compared with the previously established calcaneal system. Results We calculated an Intraclass correlation coefficient (ICC) range of 0.957 to 0.985 with a mean of 0.975 and interclass reliability coefficient of 0.993 indicating that this method is reliable and consistent. Our system showed no significant difference between gender with respect to PHV, which makes it a reliable surrogate for determining bone age in paediatric and adolescent patients. Conclusions Our system has a strong association with the calcaneal system. It is a simple six-stage system that is reliable and correlated more strongly with PHV than chronological age. The system requires knowledge of the ossification markers used for each stage but is easily used in a clinical setting.


2021 ◽  
Vol 9 (10_suppl5) ◽  
pp. 2325967121S0031
Author(s):  
Cary Politzer ◽  
James Bomar ◽  
Hakan Pehlivan ◽  
Pradyumna Gurusamy ◽  
Eric Edmonds ◽  
...  

Objectives: In managing pediatric knee conditions, an accurate bone age assessment is often critical for diagnostic, prognostic, and treatment purposes. Historically, the Greulich and Pyle Atlas (hand atlas) has been the gold standard bone age assessment tool. In 2013, a shorthand bone age assessment tool based on this atlas (hand shorthand) was established as a simpler and more efficient alternative. Recently, a knee MRI bone age atlas (MRI atlas) was created potentially to circumvent the need for a left hand radiograph. Our objective is to create a shorthand version of the magnetic resonance imaging atlas. Methods: A shorthand bone age method (Figure 1) was created utilizing the previously published MRI atlas, which utilizes several criteria that are visualized across a series of images. The MRI shorthand draws on the most characteristic criteria for each age that is best observed on a single MR image. For validation, we performed a retrospective assessment of skeletally immature patients that had a knee MRI and left hand radiograph within four weeks. Four readers who were familiar with the hand atlas, hand shorthand, MRI atlas, and MRI shorthand read each of the images in a blinded fashion. Inter- and intra-observer reliability was evaluated using intraclass correlation coefficient (ICC), variability among observers was evaluated using percent agreement. Results: 26 patients with a mean age of 13.6 years (range 9.0-16.9) met the inclusion criteria. The intra- and inter-observer reliability of all four assessment tools was excellent (ICC ≥ 0.8, p<0.001) (Table 1). When comparing the MRI shorthand to the MRI atlas, there was excellent agreement (ICC = 0.974), whereas the hand shorthand compared to the hand atlas had good agreement (ICC = 0.765). The MRI shorthand also had perfect agreement in 58% of reads among all four readers and 96% of reads had agreement within 1 year, whereas the hand shorthand had perfect agreement in 32% of reads and 77% agreement within 1 year (Table 2). Conclusions: The MRI shorthand is a simple and efficient means of assessing skeletal maturity of adolescent patients with a knee MRI. This bone age assessment technique has inter-observer and intra-observer reliability equivalent or better than the standard means utilizing a left hand radiograph.


2017 ◽  
Author(s):  
Khalaf Alshamrani ◽  
Amaka Offiah ◽  
Elzene kruger
Keyword(s):  
Bone Age ◽  

2014 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Philippe Terrier ◽  
Fabienne Reynard

Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.


Sign in / Sign up

Export Citation Format

Share Document