scholarly journals Towards Personalized Auditory Models: Predicting Individual Sensorineural Hearing-Loss Profiles From Recorded Human Auditory Physiology

2021 ◽  
Vol 25 ◽  
pp. 233121652098840 ◽  
Author(s):  
Sarineh Keshishzadeh ◽  
Markus Garrett ◽  
Sarah Verhulst

Over the past decades, different types of auditory models have been developed to study the functioning of normal and impaired auditory processing. Several models can simulate frequency-dependent sensorineural hearing loss (SNHL) and can in this way be used to develop personalized audio-signal processing for hearing aids. However, to determine individualized SNHL profiles, we rely on indirect and noninvasive markers of cochlear and auditory-nerve (AN) damage. Our progressive knowledge of the functional aspects of different SNHL subtypes stresses the importance of incorporating them into the simulated SNHL profile, but has at the same time complicated the task of accomplishing this on the basis of noninvasive markers. In particular, different auditory-evoked potential (AEP) types can show a different sensitivity to outer-hair-cell (OHC), inner-hair-cell (IHC), or AN damage, but it is not clear which AEP-derived metric is best suited to develop personalized auditory models. This study investigates how simulated and recorded AEPs can be used to derive individual AN- or OHC-damage patterns and personalize auditory processing models. First, we individualized the cochlear model parameters using common methods of frequency-specific OHC-damage quantification, after which we simulated AEPs for different degrees of AN damage. Using a classification technique, we determined the recorded AEP metric that best predicted the simulated individualized cochlear synaptopathy profiles. We cross-validated our method using the data set at hand, but also applied the trained classifier to recorded AEPs from a new cohort to illustrate the generalizability of the method.

2020 ◽  
Author(s):  
Sarineh Keshishzadeh ◽  
Markus Garrett ◽  
Sarah Verhulst

AbstractOver the past decades, different types of auditory models have been developed to study the functioning of normal and impaired auditory processing. Several models can simulate frequency-dependent sensorineural hearing loss (SNHL), and can in this way be used to develop personalized audio-signal processing for hearing aids. However, to determine individualized SNHL profiles, we rely on indirect and non-invasive markers of cochlear and auditory-nerve (AN) damage. Our progressive knowledge of the functional aspects of different SNHL subtypes stresses the importance of incorporating them into the simulated SNHL profile, but has at the same time complicated the task of accomplishing this on the basis of non-invasive markers. In particular, different auditory evoked potential (AEP) types can show a different sensitivity to outer-hair-cell (OHC), inner-hair-cell (IHC) or AN damage, but it is not clear which AEP-derived metric is best suited to develop personalized auditory models. This study investigates how simulated and recorded AEPs can be used to derive individual AN- or OHC-damage patterns and personalize auditory processing models. First, we individualized the cochlear-model parameters using common methods of frequency-specific OHC-damage quantification, after which we simulated AEPs for different degrees of AN-damage. Using a classification technique, we determined the recorded AEP metric that best predicted the simulated individualized CS profiles. We cross-validated our method using the dataset at hand, but also applied the trained classifier to recorded AEPs from a new cohort to illustrate the generalisability of the method.


Author(s):  
Viacheslav Vasilkov ◽  
Markus Garrett ◽  
Manfred Mauermann ◽  
Sarah Verhulst

AbstractAuditory de-afferentation, a permanent reduction in the number of innerhair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.Significance StatementCochlear synaptopathy was in 2009 identified as a new form of sensorineural hearing loss (SNHL) that also affects primates and humans. However, clinical practice does not routinely screen for synaptopathy, and hence its consequences for degraded sound and speech perception remain unclear. Cochlear synaptopathy may thus remain undiagnosed and untreated in the aging population who often report self-reported hearing difficulties. To enable an EEG-based differential diagnosis of synaptopathy in humans, it is crucial to develop a recording method that evokes a robust response and emphasizes inter-individual differences. These differences should reflect the synaptopathy aspect of SNHL, while being insensitive to other aspects of SNHL (e.g. outer-hair-cell damage). This study uniquely combines computational modeling with experiments in normal and hearing-impaired listeners to design an EFR stimulation and recording paradigm that can be used for the diagnosis of synaptopathy in humans.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xi Gu ◽  
Daqi Wang ◽  
Zhijiao Xu ◽  
Jinghan Wang ◽  
Luo Guo ◽  
...  

Abstract Background Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. Results The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV–CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV–CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV–CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. Conclusions These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 927 ◽  
Author(s):  
M Charles Liberman

The classic view of sensorineural hearing loss has been that the primary damage targets are hair cells and that auditory nerve loss is typically secondary to hair cell degeneration. Recent work has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of the synaptic connections between hair cells and the auditory nerve. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained a “hidden hearing loss” for two reasons: 1) the neuronal cell bodies survive for years despite loss of synaptic connection with hair cells, and 2) the degeneration is selective for auditory nerve fibers with high thresholds. Although not required for threshold detection when quiet, these high-threshold fibers are critical for hearing in noisy environments. Research suggests that primary neural degeneration is an important contributor to the perceptual handicap in sensorineural hearing loss, and it may be key to the generation of tinnitus and other associated perceptual anomalies. In cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from surviving auditory neurons and re-establishment of their peripheral synapses; thus, treatments may be on the horizon.


Author(s):  
Melanie Holmgren ◽  
Lavinia Sheets

Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.


2006 ◽  
Vol 120 (8) ◽  
pp. 627-630 ◽  
Author(s):  
L Jovanovic-Bateman ◽  
R Hedreville

This prospective study involved 79 homozygote and heterozygote sickle cell anaemia patients (16 to 50 years old) and a control group of 40 people.All patients underwent ENT, audiological and brainstem auditory evoked responses (BSER) examinations in order to evaluate the incidence of sensorineural hearing loss (SNHL), to identify the changes at the level of the cochlear nerve and the central pathways, and to determine the most vulnerable group, in order to intervene with early prevention and rehabilitation for this condition.A hearing loss of greater than 20 dB at two or more frequencies was found in 36 (45.57 per cent) sickle cell patients (19 (47.22 per cent) HbSC patients and 17 (43.59 per cent) HbSS patients) and three (7.5 per cent) members of the control group. Homozygote and heterozygote patients, as well as both sexes, were equally affected.Bilateral hearing loss occurred in 19 (52.78 per cent) patients, unilateral right-sided hearing loss in five (13.89 per cent) patients and unilateral left-sided hearing loss in 12 (33.33 per cent) patients.Brainstem auditory evoked potential demonstrated a prolonged I–V (III–V) interpeak latency in 13 (25.35 per cent) sickle cell patients (11 men (eight with HbSS) and two women).The hearing loss in HbSS patients was neural in nature and of earlier onset; the hearing loss in HbSC patients was usually cochlear in nature and of later onset.Despite high medical standards and 100 per cent social security cover, the high incidence of SNHL in our sickle cell affected patients (the majority with the Benin haplotype) was probably due to their specific haematological profile and to the original geographical distribution of the disease in the tropics.Our results highlight the necessity for early and regular hearing assessment of sickle cell patients, including BSER examination, especially in male patients with SNHL.


2021 ◽  
Author(s):  
Pei Zhuang ◽  
Suiching Phung ◽  
Athanasia Warnecke ◽  
Alexandra Arambula ◽  
Madeleine St. Peter ◽  
...  

AbstractEvaluation of hearing loss patients using clinical audiometry has been unable to give a definitive cellular or molecular diagnosis, hampering the development of treatments of sensorineural hearing loss. However, biopsy of inner ear tissue without losing residual hearing function for pathologic diagnosis is extremely challenging. In a clinical setting, perilymph can be accessed, so alternative methods for molecular characterization of the inner ear may be developed. Recent approaches to improving inner ear diagnostics have been focusing on the evaluation of the proteomic or miRNA profiles of perilymph. Inspired by recent characterization and classification of many neurodegenerative diseases using exosomes which not only are produced in locally in diseased tissue but are transported beyond the blood brain barrier, we demonstrate the isolation of human inner ear specific exosomes using a novel ultrasensitive immunomagnetic nano pom-poms capture-release approach. Using perilymph samples harvested from surgical procedures, we were able to isolate exosomes from sensorineural hearing loss patients in only 2-5 μL of perilymph. By isolating sensory hair cell derived exosomes through their expression level of myosin VII, we for the first time sample material from hair cells in the living human inner ear. This work sets up the first demonstration of immunomagnetic capture-release nano pom-pom isolated exosomes for liquid biopsy diagnosis of sensorineural hearing loss. With the ability to isolate exosomes derived from different cell types for molecular characterization, this method also can be developed for analyzing exosomal biomarkers from more accessible patient tissue fluids such as plasma.


2019 ◽  
Author(s):  
Viacheslav Vasilkov ◽  
Sarah Verhulst

AbstractDamage to the auditory periphery is more widespread than predicted by the gold-standard clinical audiogram. Noise exposure, ototoxicity and aging can destroy cochlear inner-hair-cell afferent synapses and result in a degraded subcortical representation of sound while leaving hearing thresholds unaffected. Damaged afferent synapses, i.e. cochlear synaptopathy, can be quantified using histology, but a differential diagnosis in living humans is difficult: histology cannot be applied and existing auditory evoked potential (AEP) metrics for synaptopathy become insensitive when other sensorineural hearing impairments co-exist (e.g., outer-hair-cell damage associated with elevated hearing thresholds). To develop a non-invasive diagnostic method which quantifies synaptopathy in humans and animals with normal or elevated hearing thresholds, we employ a computational model approach in combination with human AEP and psychoacoustics. We propose the use of a sensorineural hearing loss (SNHL) map which comprises two relative AEP-based metrics to quantify the respective degrees of synaptopathy and OHC damage and evaluate to which degree our predictions of AEP alterations can explain individual data-points in recorded SNHL maps from male and female listeners with normal or elevated audiometric thresholds. We conclude that SNHL maps can offer a more precise diagnostic tool than existing AEP methods for individual assessment of the synaptopathy and OHC-damage aspect of sensorineural hearing loss.Significance StatementHearing loss ranks fourth in global causes for disability and risk factors include noise exposure, ototoxicity and aging. The most vulnerable parts of the cochlea are the inner-hair-cell afferent synapses and their damage (cochlear synaptopathy) results in a degraded subcortical representation of sound. While synaptopathy can be estimated reliably using histology, it cannot be quantified this way in living humans. Secondly, other co-existing sensorineural hearing deficits (e.g., outer-hair-cell damage) can complicate a differential diagnosis. To quantify synaptopathy in humans and animals with normal or elevated hearing thresholds, we adopt a theoretical and interdisciplinary approach. Sensitive diagnostic metrics for synaptopathy are crucial to assess its prevalence in humans, study its impact on sound perception and yield effective hearing restoration strategies.


Sign in / Sign up

Export Citation Format

Share Document