scholarly journals Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening

2019 ◽  
Vol 25 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Olivia W. Lee ◽  
Shelley Austin ◽  
Madison Gamma ◽  
Dorian M. Cheff ◽  
Tobie D. Lee ◽  
...  

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.

2018 ◽  
Author(s):  
Olivia W. Lee ◽  
Shelley Austin ◽  
Madison Gamma ◽  
Dorian M. Cheff ◽  
Tobie D. Lee ◽  
...  

AbstractCell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed cell-based cytotoxicity of nearly 10,000 compounds in NCATS annotated libraries, and over 100,000 compounds in a diversity library, against four ‘normal’ cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitutes a valuable resource for the scientific community and provides insight on the extent of cytotoxic compounds in screening libraries, identifying and avoiding compounds with cytotoxicity during high-throughput screening campaigns.


Author(s):  
Sukrant Sharma ◽  
Ravi Mundugaru ◽  
Pradeepa H. Dakappa ◽  
Pundalik R. Naik

Background: The fruit rinds of Garcinia pedunculata has potential medicinal properties and used in many chronic ailments. It has been demonstrated that cytoprotective effects in various experimental research works. But its cytotoxic effect has not been evaluated. The present study was aimed to screen its relative cytotoxic effect on normal and cancer cell lines.Methods: In the present study, the cytotoxic effect of hydro alcoholic extract of Garcinia pedunculata was evaluated on normal human embryonic kidney (HEK-293) and M.D. Anderson metastatic breast cancer cell lines (MDA-MB 231) using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay.Results: Higher dose level of hydro alcoholic extract of Garcinia pedunculata (HAGP) (500 μg/ml) has shown considerable increase (112.503) in the percentage viability of HEK-29 whereas; there is a remarkable decrease in the viable cell population (77.490) in MDA-MB 231.Conclusions: Based on the observed results we could conclude that HAGP has potential cytotoxic effect on the cancer cell line without altering the normal cell growth and proliferation. Thus it has potential to develop as a safer chemotherapeutic agent. Further detailed exploration is required to confirm its therapeutic efficacy in different cancer cell lines.


2018 ◽  
Author(s):  
James M McFarland ◽  
Zandra V Ho ◽  
Guillaume Kugener ◽  
Joshua M Dempster ◽  
Phillip G Montgomery ◽  
...  

The availability of multiple datasets together comprising hundreds of genome-scale RNAi viability screens across a diverse range of cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated estimation of cell line screen quality parameters and hierarchical Bayesian inference into an analytical framework for analyzing RNAi screens (DEMETER2; https://depmap.org/R2-D2). We applied this model to individual large-scale datasets and show that it substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes as well as agreement with CRISPR-Cas9-based viability screens. This model also allows us to effectively integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.


2020 ◽  
Author(s):  
Kun Zhang ◽  
Yanbin Zhao

AbstractCell-based assays represent nearly half of all high-throughput screens currently conducted for risk assessment of environmental chemicals. However, the sensitivity and heterogeneity among cell lines has long been concerned but explored only in a limited manner. Here, we address this question by conducting a large scale transcriptomic analysis of the responses of discrete cell lines to specific small molecules. Our results illustrate heterogeneity of the extent and timing of responses among cell lines. Interestingly, high sensitivity and/or heterogeneity was found to be cell type-specific or universal depending on the different mechanism of actions of the compounds. Our data provide a novel insight into the understanding of cell-small molecule interactions and have substantial implications for the design, execution and interpretation of high-throughput screening assays.


Author(s):  
Andrew Jones ◽  
Aviad Tsherniak ◽  
James M. McFarland

AbstractWhile chemical and genetic viability screens in cancer cell lines have identified many promising cancer vulnerabilities, simple univariate readouts of cell proliferation fail to capture the complex cellular responses to perturbations. Complementarily, gene expression profiling offers an information-rich measure of cell state that can provide a more detailed account of cellular responses to perturbations. Relatively little is known, however, about the relationship between transcriptional responses to per-turbations and the long-term cell viability effects of those perturbations. To address this question, we integrated thousands of post-perturbational transcriptional profiles from the Connectivity Map with large-scale screens of cancer cell lines’ viability response to genetic and chemical perturbations. This analysis revealed a generalized transcriptional signature associated with reduced viability across perturbations, which was consistent across post-perturbation time-points, perturbation types, and viability datasets. At a more granular level, we lay out the landscape of treatment-specific expression-viability relationships across a broad panel of drugs and genetic reagents, and we demonstrate that these post-perturbational expression signatures can be used to infer long-term viability. Together, these results help unmask the transcriptional changes that are associated with perturbation-induced viability loss in cancer cell lines.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 407-407
Author(s):  
Louis Spencer Krane ◽  
Reema Railkar ◽  
Iawan Hsu ◽  
Cathy Vocke ◽  
Paul S. Meltzer ◽  
...  

407 Background: Chemotherapy for urothelial cancer (UC) is less effective in patients with large volume metastatic disease, likely due to acquired driver mutations. Driver mutation may lead to differences in sensitivity between primary cell lines and metastatic clones. Quantitative high throughput screening (qHTS) assesses large drug libraries to evaluate in vitro effectiveness. We utilized this modality to compare effectiveness of cell inhibition in two bladder cancer cell lines with their metastatic lines. Methods: We screened T24 and UMUC-3 bladder cancer cell lines against 1,912 oncology-focused drugs using a 48 hr cell proliferation assay with an ATP-based readout (CellTiterGlo), and determined the activity and potency of the compounds in a dose response manner. We compared the results of their activity with known metastatic lines for reach of these primary lines: T24T, SLT3 and FL3 for T24 and LUL2 UMUC3 and UMUC3-luc (LUC3). We identified candidate drugs based on two parameters: 1) more than 70% inhibition at 48 hours and 2) a curve class of -1.1 or -1.2 indicating curve class with good fit (r2 > 0.9). We used a custom capture next generation DNA sequencing chip for exonic regions of 229 known cancer related genes to compare primary and metastatic tumor cell lines. Results: The qHTS compounds, are demonstrated in figure 1a for T24 cell lines and figure 1b for UMUC cell lines. Amongst 1912 drugs tested, only 141 (7.4%) met inclusion criteria for T24. However, only 79 of these drugs (56%) met criteria for all cell lines derived from T24. 160 (8.4%) compounds were found to be active in the UMUC line. Only 32 (20%) of the UMUC3 detected compounds remained active in all UMUC3 derived cell lines. Genomic comparison between cell lines identified several mutations which were found only in the derived cell lines (RAC1 and CDH1 in UMUC3) and (AR, CDK12, GATA1, GUCY1A2 in T24). Conclusions: qHTS of a library of potential therapeutic interventions can produce a list of targets and therapies for bladder cancer. This data reinforces the differences between primary and metastatic tumors as compounds identified active in the primary cell lines were inactive in known metastatic cancer cell lines .


2019 ◽  
Vol 166 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Akihiro Murashima ◽  
Keiko Shinjo ◽  
Keisuke Katsushima ◽  
Tetsuo Onuki ◽  
Yasumitsu Kondoh ◽  
...  

Abstract Dysregulation of enhancer of zeste homologue 2 (EZH2), a methyltransferase component of polycomb repressive complex 2, is found in many types of cancers especially those that are highly progressive and aggressive. Specific catalytic inhibitors of EZH2 have high anti-tumour activity, particularly in lymphomas with EZH2 activating mutations. However, the clinical benefits of EZH2 catalytic inhibitors in tumours overexpressing EZH2 are still limited. Here, we identified NPD13668, a novel modulator of EZH2-mediated gene silencing, from 329,049 small chemical compounds using a cell-based high-throughput screening assay. NPD13668 reactivated the expression of silenced H3K27me3 target genes together with depletion of the H3K27me3 modification. In addition, NPD13668 repressed the cell growth of prostate cancer cell lines (PC3 and LNCaP) and ovarian cancer cell lines (SKOV3 and NIH-OVCAR3). NPD13668 partially inhibited the methyltransferase activity of EZH2 in vitro. Genome-wide expression analysis revealed that after NPD13668 treatment, about half of the upregulated genes overlapped with genes upregulated after treatment with GSK126, well-known EZH2 catalytic inhibitor, indicating that NPD13668 is a potential modulator of EZH2 methyltransferase activity. Our data demonstrated that targeting the pharmacological inhibition of EZH2 activity by NPD13668 might be a novel cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document