Application of High-Throughput Automated Patch-Clamp Electrophysiology to Study Voltage-Gated Ion Channel Function in Primary Cortical Cultures

2020 ◽  
Vol 25 (5) ◽  
pp. 447-457 ◽  
Author(s):  
May Fern Toh ◽  
Julie M. Brooks ◽  
Tim Strassmaier ◽  
Rodolfo J. Haedo ◽  
Corey B. Puryear ◽  
...  

Conventionally, manual patch-clamp electrophysiological approaches are the gold standard for studying ion channel function in neurons. However, these approaches are labor-intensive, yielding low-throughput results, and are therefore not amenable for compound profiling efforts during the early stages of drug discovery. The SyncroPatch 384PE has been successfully implemented for pharmacological experiments in heterologous overexpression systems that may not reproduce the function of voltage-gated ion channels in a native, heterogeneous environment. Here, we describe a protocol allowing the characterization of endogenous voltage-gated potassium (Kv) and sodium (Nav) channel function in developing primary rat cortical cultures, allowing investigations at a significantly improved throughput compared with manual approaches. Key neuronal marker expression and microelectrode array recordings of electrophysiological activity over time correlated well with neuronal maturation. Gene expression data revealed high molecular diversity in Kv and Nav subunit composition throughout development. Voltage-clamp experiments elicited three major current components composed of inward and outward conductances. Further pharmacological experiments confirmed the endogenous expression of functional Kv and Nav channels in primary cortical neurons. The major advantages of this approach compared with conventional manual patch-clamp systems include unprecedented improvements in experimental ease and throughput for ion channel research in primary neurons. These efforts demonstrated feasibility for primary neuronal ion channel investigation with the SyncroPatch, providing the foundation for future studies characterizing biophysical changes in endogenous ion channels in primary systems associated with disease or development.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


1991 ◽  
Vol 261 (5) ◽  
pp. F808-F814 ◽  
Author(s):  
H. Matsunaga ◽  
N. Yamashita ◽  
Y. Miyajima ◽  
T. Okuda ◽  
H. Chang ◽  
...  

We used the patch-clamp technique to clarify the nature of ion channels in renal mesangial cells in culture. In the cell-attached mode most patches were silent in the absence of agonists. In some patches a 25-pS nonselective channel was observed. This 25-pS cation channel was consistently observed in inside-out patches, and it was activated by intracellular Ca2+. Excised patch experiments also revealed the existence of a 40-pS K+ channel, which was activated by intracellular Ca2+. This 40-pS K+ channel was observed infrequently in the cell-attached mode. The activities of both channels were increased by arginine vasopressin or angiotensin II, resulting from an increase in intracellular Ca2+ concentration.


Author(s):  
Juan J. Nogueira ◽  
Ben Corry

Many biological processes essential for life rely on the transport of specific ions at specific times across cell membranes. Such exquisite control of ionic currents, which is regulated by protein ion channels, is fundamental for the proper functioning of the cells. It is not surprising, therefore, that the mechanism of ion permeation and selectivity in ion channels has been extensively investigated by means of experimental and theoretical approaches. These studies have provided great mechanistic insight but have also raised new questions that are still unresolved. This chapter first summarizes the main techniques that have provided significant knowledge about ion permeation and selectivity. It then discusses the physical mechanisms leading to ion permeation and the explanations that have been proposed for ion selectivity in voltage-gated potassium, sodium, and calcium channels.


1996 ◽  
Vol 07 (04) ◽  
pp. 321-331 ◽  
Author(s):  
LARRY S. LIEBOVITCH ◽  
ANGELO T. TODOROV

Ion channels in the cell membrane spontaneously switch from states that are closed to the flow of ions such as sodium, potassium, and chloride to states that are open to the flow of these ions. The durations of times that an individual ion channel protein spends in the closed and open states can be measured by the patch clamp technique. We explore two basic issues about the molecular properties of ion channels: 1) If the switching between the closed and open state is an inherently random event, what does the patch clamp data tell us about the structure or motions in the ion channel protein? 2) Is this switching random?


1999 ◽  
Vol 79 (4) ◽  
pp. 1317-1372 ◽  
Author(s):  
Frank Lehmann-Horn ◽  
Karin Jurkat-Rott

By the introduction of technological advancement in methods of structural analysis, electronics, and recombinant DNA techniques, research in physiology has become molecular. Additionally, focus of interest has been moving away from classical physiology to become increasingly centered on mechanisms of disease. A wonderful example for this development, as evident by this review, is the field of ion channel research which would not be nearly as advanced had it not been for human diseases to clarify. It is for this reason that structure-function relationships and ion channel electrophysiology cannot be separated from the genetic and clinical description of ion channelopathies. Unique among reviews of this topic is that all known human hereditary diseases of voltage-gated ion channels are described covering various fields of medicine such as neurology (nocturnal frontal lobe epilepsy, benign neonatal convulsions, episodic ataxia, hemiplegic migraine, deafness, stationary night blindness), nephrology (X-linked recessive nephrolithiasis, Bartter), myology (hypokalemic and hyperkalemic periodic paralysis, myotonia congenita, paramyotonia, malignant hyperthermia), cardiology (LQT syndrome), and interesting parallels in mechanisms of disease emphasized. Likewise, all types of voltage-gated ion channels for cations (sodium, calcium, and potassium channels) and anions (chloride channels) are described together with all knowledge about pharmacology, structure, expression, isoforms, and encoding genes.


2018 ◽  
Vol 120 (3) ◽  
pp. 1198-1211 ◽  
Author(s):  
Ileana Hernández-Araiza ◽  
Sara L. Morales-Lázaro ◽  
Jesús Aldair Canul-Sánchez ◽  
León D. Islas ◽  
Tamara Rosenbaum

Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).


2019 ◽  
Author(s):  
Juhwan Lee ◽  
Mooseok Kang ◽  
Sangyeol Kim ◽  
Iksoo Chang

AbstractUnderstanding the gating mechanism of ion channel proteins is key to understanding the regulation of cell signaling through these channels. Channel opening and closing are regulated by diverse environmental factors that include temperature, electrical voltage across the channel, and proton concentration. Low permeability in voltage-gated potassium ion channels (Kv) is intimately correlated with the prolonged action potential duration observed in many acidosis diseases. The Kv channels consist of voltage-sensing domains (S1–S4 helices) and central pore domains (S5–S6 helices) that include a selectivity filter and water-filled cavity. The voltage-sensing domain is responsible for the voltage-gating of Kv channels. While the low permeability of Kv channels to potassium ion is highly correlated with the cellular proton concentration, it is unclear how an intracellular acidic condition drives their closure, which may indicate an additional pH-dependent gating mechanism of the Kv family. Here, we show that two residues E327 and H418 in the proximity of the water cavity of Kv1.2 play crucial roles as a pH switch. In addition, we present a structural and molecular concept of the pH-dependent gating of Kv1.2 in atomic detail, showing that the protonation of E327 and H418 disrupts the electrostatic balance around the S6 helices, which leads to a straightening transition in the shape of their axes and causes dewetting of the water-filled cavity and closure of the channel. Our work offers a conceptual advancement to the regulation of the pH-dependent gating of various voltage-gated ion channels and their related biological functions.Author SummaryThe acid sensing ion channels are a biological machinery for maintaining the cell functional under the acidic or basic cellular environment. Understanding the pH-dependent gating mechanism of such channels provides the structural insight to design the molecular strategy in regulating the acidosis. Here, we studied the voltage-gated potassium ion channel Kv1.2 which senses not only the electrical voltage across the channels but also the cellular acidity. We uncovered that two key residues E327 and H418 in the pore domain of Kv1.2 channel play a role as pH-switch in that their protonation control the gating of the pore in Kv1.2 channel. It offered a molecular insight how the acidity reduces the ion permeability in voltage-gated potassium channels.


2019 ◽  
Author(s):  
◽  
Marco Antonio Navarro

Ionic currents drive cellular function within all living cells to perform highly specific tasks. For excitable cells, such as muscle and neurons, voltage-gated ion channels have finely tuned kinetics that allow the transduction of Action potentials to other cells. Voltage-gated ion channels are molecular machines that open and close depending on electrical potential. Neuronal firing rates are largely determined by the overall availability of voltage-gated Na+ and K+ currents.This work describes new approaches for collecting and analyzing experimental data that can be used to streamline experiments. Ion channels are composed of multimeric complexes regulated by intracellular factors producing complex kinetics. The stochastic behavior of thousands of individual ion hannels coordinates to produce cellular activity. To describe their activity and test hypotheses about the channel, experimenters often fit Markov models to a set of experimental data. Markov models are defined by a set of states, whose transitions described by rate constants. To improve the modeling process, we have developed computational approaches to introduce kinetic constraints that reduces the parameter search space. This work describes the implementation and mathematical transformations required to describe linear and non-linear parameter constraints that govern rate constants. Not all ion channel behaviors can easily be described by rate constants. Therefore, we developed and implemented a penalty-based mechanism that can be used to guide the optimization engine to produce a model with a desired behavior, such as single-channel open probability and use dependent effects. To streamline data collection for experiments in brain slice preparations, we developed a 3D virtual software environment that incorporates data from micro-positioning motors and scientific cameras in real-time. This environment provides positional feedback to the investigator and allows for the creation of data maps including both images and electrical recordings. We have also produced semi-automatic targeting procedures that simplifies the overall experimental experience. Experimentally, this work also examines how the kinetic mechanism of voltage gated Na channels regulates the neuronal firing of brainstem respiratory neurons. These raphe neurons are intrinsic pacemakers that do not rely on synaptic connections to elicit activity. I explored how intracellular calcium regulates the kinetics of TTX-sensitive Na+ currents using whole-cell patch clamp electrophysiology. Established with intracellular Ca2+ buffers, high [Ca2+] levels greater than ~7 [micro]M did not change the voltage dependence of steady-state activation and inactivation, but slightly slowed inactivation time course. However, the recovery from inactivation and use dependence inactivation is slowed by high intracellular [Ca2+]. Overall, these approaches described in this work have improved data acquisition and data analysis to create better ion channel models and enhance the electrophysiology experience.


Sign in / Sign up

Export Citation Format

Share Document