scholarly journals Experimental and analytical investigations into wire electrochemical micro turning

2019 ◽  
Vol 2 (1) ◽  
pp. 42-58 ◽  
Author(s):  
Aakash Tyagi ◽  
Vyom Sharma ◽  
Divyansh Singh Patel ◽  
V. K. Jain ◽  
J. Ramkumar

Electrochemical turning (ECT) has been studied by researchers for making axially symmetric parts of different materials by using shaped tools fed radially into the rotating workpiece. Despite having various advantages over other advanced machining processes, ECT has failed to gain much attention by the manufacturing industries and researchers because of the complexity involved in designing a shaped tool to give a desired shape and tolerances to the workpiece. In the present work, a systematic study is presented to understand the applicability of a microwire as a replacement for a shaped tool in this process. Simulations are carried out to understand the distribution of electric field lines and current density in case of wire electrochemical turning (ECT). The effects of insulting wire up to different angles on the evolved groove profile are investigated by performing simulation study. Minimum groove width is observed at the lowest value of ‘tool exposed angle’ (30°), while maximum groove depth is observed at the highest value of tool exposed angle (270°). In the later part of the work, an experimental study is performed to characterize a groove profile using a bare copper wire of diameter 200 µm. The effects of input parameters, such as workpiece rpm, tool radial insertion, applied potential and electrolyte concentration on responses like groove width, corner radius and taper angle are investigated. Finally, the understanding of behaviour of different process parameters is applied to perform operations like multi-step turning, microgroove turning and taper turning on copper and micro-threading on stainless steel 304.

2006 ◽  
Vol 128 (3) ◽  
pp. 585-593 ◽  
Author(s):  
A. M. Gad ◽  
M. M. Nemat-Alla ◽  
A. A. Khalil ◽  
A. M. Nasr

Recently, herringbone-grooved journal bearings have had important applications in miniature rotating machines. The scribed grooves, on either the rotating or stationary member of the bearing, can pump the lubricant inward, which generates supporting stiffness and improves the dynamic stability, especially for concentric operation. Most of the previous investigations that dealt with herringbone grooved journal bearings and grooved thrust bearings were theoretical. Few experimental attempts for the investigation of the performance characteristics of herringbone grooved journal bearings (HGJBs) and grooved thrust bearings have been done. All these investigations concentrated on rectangular and circular groove profiles of HGJBs. In order to improve the performance characteristics of HGJBs, a new design of the groove profile, the beveled-step groove profile, is introduced. The introduced groove profile is capable of increasing the pressure recovery at the divergence of the flow over the step. In addition, it increases the amount of oil pumped inward over the circular groove profile. Optimization processes were carried out experimentally, in order to obtain the optimal geometry of the introduced groove profile. The optimum geometrical parameters of the groove (groove angle α, groove width ratio β, and groove depth ratio Γ) are 29deg, 0.5, and 2.0, respectively, which give maximum radial force and maximum radial stiffness of the beveled-step HGJB. In order to check the effectiveness of the introduced beveled-step groove profile, the obtained results were compared with that for rectangular groove profile. The comparison shows that the introduced beveled-step HGJBs have higher radial force, higher load carrying capacity, and lower friction torque than the rectangular HGJBs.


Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

Recently advanced machining processes are widely used by manufacturing industries in order to produce high quality precise and very complex products. These advanced machining processes involve large number of input parameters which may affect the cost and quality of the products. Selection of optimum machining parameters in such advanced machining processes is very important to satisfy all the conflicting objectives of the process. This algorithm is inspired by the teaching-learning process and it works on the effect of influence of a teacher on the output of learners in a class. This paper presents the application of Response Surface Methodology coupled with newly developed advanced algorithm Teaching Learning Based Optimization Technique (TLBO) is applied for the process parameters optimization for ball end milling process on Inconel 718 cantilevers. The machining and tool related parameters like spindle speed, milling feed, workpiece thickness and workpiece inclination with tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate.


2012 ◽  
Vol 7 (3) ◽  
pp. 155892501200700 ◽  
Author(s):  
Rui-Hua Yang ◽  
Wei-Mian Wu ◽  
Hong-Bo Wang ◽  
Yu-Qin Wan ◽  
Chun-Ping Xie ◽  
...  

The surface characteristics of a solospun roller are important to the properties of solo-sirofil yarns. In this research, a three-level, three-factor, orthogonal experimental design (33) was used to investigate the effect of a solospun roller diameter, groove width and groove depth on the hairiness of cotton/polyester composite yarn. Solo-sirofil yarns with different solospun rollers were produced, and the hairiness was tested. It was shown that the hairiness of the solo-sirofil composite yarn was reduced by 44% compared to that of the sirofil. The structure of the solo-sirofil was improved when the thickness of the groove is 0.2 mm, with an alternating depth of 0.3 mm and 0.4 mm, a width of 0.5 mm and a roller diameter of 13 mm.


2011 ◽  
Vol 201-203 ◽  
pp. 85-88 ◽  
Author(s):  
Min Han ◽  
Shan Li ◽  
Lu Tao Deng

The article introduces three design techniques of variable pitch & groove depth & groove width screw. We found parameterized mathematical model of the type of heterotypic screw by analyzing and computing. Then it can realize to CNC machining of variable pitch & groove depth & groove width screw on lathe.


2012 ◽  
Vol 523-524 ◽  
pp. 1018-1023
Author(s):  
Ekkard Brinksmeier ◽  
Oltmann Riemer ◽  
Christian Robert ◽  
Sven Twardy

This paper presents two alternative approaches in mold making for micro forming processes. The quality of formed micro parts is mainly dominated by the process parameters and the surface characteristics of the applied forming tools. Forming dies with advanced micro structures can improve the result of forming processes compared to tools with smooth surfaces. Here an approach of micro ball end milling is described to generate the macro geometry as well as an engineered surface texture on micro forming tools in one machining step. In addition to the surface topography, the die material has a decisive influence on the forming result and durability of the forming tool. Therefore single crystalline diamond represents an promissing material for forming tools, because of its unique material characteristics. On the other hand single crystalline diamond requires unreasonable high efforts for its geometrical shaping. Therefore, this paper will introduce a new approach to machine single crystalline diamond by thermo-chemical material removal.


Author(s):  
Ishaan R. Kale ◽  
Mayur A. Pachpande ◽  
Swapnil P. Naikwadi ◽  
Mayur N. Narkhede

The demand of Advanced Machining Processes (AMP) is continuously increasing owing to the technological advancement. The problems based on AMP are complex in nature as it consisted of parameters which are interdependent. These problems also consisted of linear and nonlinear constraints. This makes the problem complex which may not be solved using traditional optimization techniques. The optimization of process parameters is indispensable to use AMP's at its aptness and to make it economical to use. This paper states the optimization of process parameters of Ultrasonic machining (USM) and Abrasive water jet machining (AWJM) processes to maximize the Material Removal Rate (MRR) using a socio inspired Cohort Intelligent (CI) algorithm. The constraints involved with these problems are handled using static penalty function approach. The solutions are compared with other contemporary techniques such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Modified Harmony Search (HS_M) and Genetic Algorithm (GA).


Sign in / Sign up

Export Citation Format

Share Document