scholarly journals ATPase in mature and differentiating phloem and xylem.

1980 ◽  
Vol 28 (4) ◽  
pp. 375-377 ◽  
Author(s):  
J Cronshaw

A cytochemical study using a lead precipitation technique has been made of the distribution of adenosine triphosphatase (ATPase) in mature and differentiating phloem and xylem cells of Nicotiana tabacum and Pisum sativum. The sites of ATPase localization in tobacco phloem were the plasma membrane, endoplasmic reticulum, mitochondria, dictyosomes, plasmodesmata, and the dispersed P proteins of mature sieve elements. In pea phloem sieve elements ATPase was localized in the endoplasmic reticulum, but was not associated with the P proteins or plasma membranes at any stage of their differentiation. In pea transfer cells ATPase activity was associated with the endoplasmic reticulum at all stages of their differentiation and with the plasma membrane of transfer cells that had formed wall ingrowths. In xylem cells of both tobacco and pea the patterns of ATPase activity was similar. At early stages of differentiation ATPase activity was associated with the plasma membrane and the endoplasmic reticulum. At intermediate stages of differentiation ATPase activity continued to be associated with the endoplasmic reticulum, but was no longer associated with the plasma membrane. At later stages of xylem element differentiation ATPase activity was associated with disintegrating organelles and with the hydrolyzing cell walls.

1983 ◽  
Vol 61 (1) ◽  
pp. 119-134 ◽  
Author(s):  
Arlette Nougarède ◽  
Pierre Landré ◽  
Jacques Rembur

The activity of enzymes which hydrolyse ATP at neutral pH was demonstrated cytochemically in the cotyledonary node and in three types of cotyledonary buds (inhibited, released from dominance, treated with fusicoccin). In the intact plant, the transfer cells of the cotyledonary node showed a very strong Mg2+-dependent, ouabaïne-insensitive ATPase activity, essentially located on the outer surface of the plasmalemma. A high concentration of K+ stimulated the ATPase activity of the plasmalemma of transfer cells and sieve elements. ATPase activity was even more specifically detected along mitochondrial cristae and the tonoplast of the phloem transfer cells and along the reticular membranes of the xylem transfer cells. All these activities which were not modified by decapitation increased after a fusicoccin treatment. In the inhibited bud the same pattern of ATPase activity occurred along the plasma membrane but with a lesser intensity. At the base of the first-bud internodes the phloem transfer cells were the only ones with a high ATPase activity. Decapitation induced, without cell specificity, an increase in the ATPase activity of the plasmalemma for the entire bud, while after fusicoccin treatment, the increase extended to the tonoplast. Proper controls eliminate the possibility of artifactual reactions or interactions with other enzymes.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


2001 ◽  
Vol 281 (3) ◽  
pp. C982-C992 ◽  
Author(s):  
Craig Gatto ◽  
Scott M. McLoud ◽  
Jack H. Kaplan

The Na+-K+-ATPase is a heterodimeric plasma membrane protein responsible for cellular ionic homeostasis in nearly all animal cells. It has been shown that some insect cells (e.g., High Five cells) have no (or extremely low) Na+-K+-ATPase activity. We expressed sheep kidney Na+-K+-ATPase α- and β-subunits individually and together in High Five cells via the baculovirus expression system. We used quantitative slot-blot analyses to determine that the expressed Na+-K+-ATPase comprises between 0.5% and 2% of the total membrane protein in these cells. Using a five-step sucrose gradient (0.8–2.0 M) to separate the endoplasmic reticulum, Golgi apparatus, and plasma membrane fractions, we observed functional Na+ pump molecules in each membrane pool and characterized their properties. Nearly all of the expressed protein functions normally, similar to that found in purified dog kidney enzyme preparations. Consequently, the measurements described here were not complicated by an abundance of nonfunctional heterologously expressed enzyme. Specifically, ouabain-sensitive ATPase activity, [3H]ouabain binding, and cation dependencies were measured for each fraction. The functional properties of the Na+-K+-ATPase were essentially unaltered after assembly in the endoplasmic reticulum. In addition, we measured ouabain-sensitive 86Rb+ uptake in whole cells as a means to specifically evaluate Na+-K+-ATPase molecules that were properly folded and delivered to the plasma membrane. We could not measure any ouabain-sensitive activities when either the α-subunit or β-subunit were expressed individually. Immunostaining of the separate membrane fractions indicates that the α-subunit, when expressed alone, is degraded early in the protein maturation pathway (i.e., the endoplasmic reticulum) but that the β-subunit is processed normally and delivered to the plasma membrane. Thus it appears that only the α-subunit has an oligomeric requirement for maturation and trafficking to the plasma membrane. Furthermore, assembly of the α-β heterodimer within the endoplasmic reticulum apparently does not require a Na+pump-specific chaperone.


1977 ◽  
Vol 55 (8) ◽  
pp. 876-885 ◽  
Author(s):  
Patricia L. Chang ◽  
John R. Riordan ◽  
Mario A. Moscarello ◽  
Jennifer M. Sturgess

To study membrane biogenesis and to test the validity of the endomembrane flow hypothesis, incorporation of 32P and [Me-3H]choline in vivo into membranes of the rat liver was followed. Rough microsomal, Golgi-rich, and plasma membrane fractions were monitored with marker enzyme assays and shown with morphometric analysis to contain 82% rough microsomes, at least 70% Golgi complexes, and 88% plasma membranes, respectively. Membrane subfractions from the rough microsomal and Golgi-rich fractions were prepared by sonic disruption.At 5 to 30 min after 32P injection, the specific radioactivity of phosphatidylcholine was higher in the rough microsomal membranes than in the Golgi membranes. From 1 to 3 h, the specific activity of phosphatidylcholine in Golgi membranes became higher and reached the maximum at about 3 h. Although the plasma membrane had the lowest specific radioactivity throughout 0.25–3 h, it increased rapidly thereafter to attain the highest specific activity at 5 h. Both rough microsomal and plasma membranes reached their maxima at 5 h.The specific radioactivity of [32P]phosphatidylethanolamine in the three membrane fractions was similar to that of [32P]phosphatidylcholine except from 5 to 30 min, when the specific radioactivity of phosphatidylethanolamine in the Golgi membranes was similar to the rough microsomal membranes.At 15 min to 5 h after [Me-3H]choline injection, more than 90% of the radioactivity in all the membranes was acid-precipitable. The specific radioactivities of the acid-precipitated membranes, expressed as dpm per milligram protein, reached the maximum at 3 h. After [Me-3H]choline injection, the specific radioactivity of phosphatidylcholine separated from the lipid extract of the acid-precipitated membranes (dpm per micromole phosphorus) did not differ significantly in the three membrane fractions. The results indicated rapid incorporation of choline into membrane phosphatidylcholine by the rough endoplasmic reticulum, Golgi, and plasma membranes simultaneously.The data with both 32P and [Me-3H]choline precursors did not support the endomembrane flow hypothesis. The Golgi complexes apparently synthesized phosphatidylethanolamine and incorporated choline into phosphatidylcholine as well as the endoplasmic reticulum. The results are discussed with relevance to current hypotheses on the biogenesis and transfer of membrane phospholipids.


1958 ◽  
Vol 4 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Aaron J. Ladman

The fine structure of the rod-bipolar synapse is described and illustrated. Each rod spherule possesses a large, single, oval or elongate mitochondrion approximately 0.5 x 2.0 microns. Surrounding the mitochondrion are elements of agranular endoplasmic reticulum. The bipolar dendrite projects into the lower pole of the spherule and usually terminates in two lobes separated by a cleft. The plasma membranes appear dense and thicker in the region of the synapse. In the rod spherule cytoplasm, contiguous with the plasma membrane is a dense, slightly concave arciform structure, the rod arciform density, extending from the base of the bipolar bifid process through the cleft to an equivalent point on the opposite side. Also within the spherule, and external (towards the sclera) to the rod arciform density, is a parallel, dense, thin lamella, the rod synaptic lamella. This is approximately 25 mµ in thickness and 400 mµ in width at its widest extent. This halfmoon-shaped plate straddles the cleft between the two lobes of the bipolar process. The lamella appears to consist of short regular rodlets or cylinders 5 to 7 mµ in diameter, oriented with their long axes perpendicular to the plane of the lamella. Minute cytoplasmic vesicles found in the cytoplasm of both the rod spherule and the bipolar terminal are most abundant near the rod synaptic lamella.


1962 ◽  
Vol 13 (3) ◽  
pp. 405-421 ◽  
Author(s):  
Jack Rosenbluth

Subsurface cisterns (SSC's) are large, flattened, membrane-limited vesicles which are very closely apposed to the inner aspect of the plasma membranes of nerve cell bodies and the proximal parts of their processes. They occur in a variety of vertebrate and invertebrate neurons of both the peripheral and central nervous systems, but not in the surrounding supporting cells. SSC's are sheet-like in configuration, having a luminal depth which may be less than 100 A and a breadth which may be as much as several microns. They are separated from the plasmalemma by a light zone of ∼50 to 80 A which sometimes contains a faint intermediate line. Flattened, agranular cisterns resembling SSC's, but structurally distinct from both typical granular endoplasmic reticulum (ER) and from Golgi membranes, also occur deep in the cytoplasm of neurons. It is suggested that membranes which are closely apposed may interact, resulting in alterations in their respective properties. The patches of neuronal plasmalemma associated with subsurface cisterns may, therefore, have special properties because of this association, resulting in a non-uniform neuronal surface. The possible significance of SSC's in relation to neuronal electrophysiology and metabolism is discussed.


1997 ◽  
Vol 322 (3) ◽  
pp. 823-828 ◽  
Author(s):  
Irma ROMERO ◽  
Ana M. MALDONADO ◽  
Pilar ERASO

Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitroeffect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of ≈1 μM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein.


1976 ◽  
Vol 21 (3) ◽  
pp. 437-448
Author(s):  
A.S. Breathnach ◽  
M. Gross ◽  
B. Martin ◽  
C. Stolinski

Fixed (glutaraldehyde, 3%) and unfixed specimens of rat buccal epithelium, striated muscle, and liver, were cryoprotected with glycerol, freeze-fractured, and replicated without sublimation. A comparison of fracture faces of general plasma membranes, nuclear membranes, mitochondrial membranes, and membranes of rough endoplasmic reticulum revealed no significant differences as between fixed and unfixed material. Apart from some membranes of liver endoplasmic reticulum, there was no evidence of aggregation or redistribution of intramembranous particles in the unfixed material. The results demonstrate that chemical prefixation of tissues for freeze-fracture is not always necessary, or even desirable, and that glycerol may not be as deeply or directly implicated in particle aggregation as previously thought. Fixation with glutaraldehyde alters the cleaving behaviour of plasma membrane at desmosomes and tight junctions, but not at gap junctions.


1986 ◽  
Vol 236 (1) ◽  
pp. 37-44 ◽  
Author(s):  
D M Delfert ◽  
S Hill ◽  
H A Pershadsingh ◽  
W R Sherman ◽  
J M McDonald

The effects of myo-inositol 1,4,5-trisphosphate (IP3) on Ca2+ uptake and release from isolated adipocyte endoplasmic reticulum and plasma membrane vesicles were investigated. Effects of IP3 were initially characterized using an endoplasmic reticulum preparation with cytosol present (S1-ER). Maximal and half-maximal effects of IP3 on Ca2+ release from S1-ER vesicles occurred at 20 microM- and 7 microM-IP3, respectively, in the presence of vanadate which prevents the re-uptake of released Ca2+ via the endoplasmic reticulum Ca2+ pump. At saturating IP3 concentrations, Ca2+ release in the presence of vanadate was 20% of the exchangeable Ca2+ pool. IP3-induced release of Ca2+ from S1-ER was dependent on extravesicular free Ca2+ concentration with maximal release occurring at 0.13 microM free Ca2+. At 20 microM-IP3 there was no effect on the initial rate of Ca2+ uptake by S1-ER. IP3 promoted Ca2+ release from isolated endoplasmic reticulum vesicles (cytosol not present) to a similar level as compared with S1-ER. Addition of cytosol to isolated endoplasmic reticulum vesicles did not affect IP3-induced Ca2+ release. The endoplasmic reticulum preparation was further fractionated into heavy and light vesicles by differential centrifugation. Interestingly, the heavy fraction, but not the light fraction, released Ca2+ when challenged with IP3. IP3 (20 microM) did not promote Ca2+ release from plasma membrane vesicles and had no effect on the (Ca2+ + Mg2+)-ATPase activity or on the initial rate of ATP-dependent Ca2+ uptake by these vesicles. These results support the concept that IP3 acts exclusively at the endoplasmic reticulum to promote Ca2+ release.


Sign in / Sign up

Export Citation Format

Share Document