A comparison of membrane fracture faces of fixed and unfixed glycerinated tissue

1976 ◽  
Vol 21 (3) ◽  
pp. 437-448
Author(s):  
A.S. Breathnach ◽  
M. Gross ◽  
B. Martin ◽  
C. Stolinski

Fixed (glutaraldehyde, 3%) and unfixed specimens of rat buccal epithelium, striated muscle, and liver, were cryoprotected with glycerol, freeze-fractured, and replicated without sublimation. A comparison of fracture faces of general plasma membranes, nuclear membranes, mitochondrial membranes, and membranes of rough endoplasmic reticulum revealed no significant differences as between fixed and unfixed material. Apart from some membranes of liver endoplasmic reticulum, there was no evidence of aggregation or redistribution of intramembranous particles in the unfixed material. The results demonstrate that chemical prefixation of tissues for freeze-fracture is not always necessary, or even desirable, and that glycerol may not be as deeply or directly implicated in particle aggregation as previously thought. Fixation with glutaraldehyde alters the cleaving behaviour of plasma membrane at desmosomes and tight junctions, but not at gap junctions.

1972 ◽  
Vol 11 (2) ◽  
pp. 477-489
Author(s):  
A. S. BREATHNACH ◽  
C. STOLINSKI ◽  
M. GROSS

Fresh, chemically unfixed, glycerinated specimens of mouse liver were examined by the technique of freeze-fracture replication without sublimation (i.e. they were not ‘etched’). Where extensive areas of fractured lamellar membranes of the rough endoplasmic reticulum are revealed en face, 2 types of fracture face are distinguishable. One of these fracture faces (A) is directed towards the cytoplasm, and the other (B) towards the cisternal cavity. A characteristic mosaic, or patchwork pattern of flat areas circumscribed by particles, is evident on both faces, and more clearly so on face B, due to a greater number of more prominent particles. Similar mosaic patterns are revealed on convex faces of the nuclear membrane, and on concave fracture faces of mitochondrial membranes, but are not evident on fracture faces of the plasma membrane. Uncertainty in establishing the exact plane of fracture of membranes in this material, since glycerol is virtually non-sublimable, makes it difficult to assess the significance of these mosaic patterns. The fact that ribosomes are not identifiable on either face of fractured endoplasmic reticulum membranes, gives no certain indication of the plane of fracture.


1976 ◽  
Vol 70 (2) ◽  
pp. 338-347 ◽  
Author(s):  
M Henkart ◽  
D M Landis ◽  
T S Reese

The structure of membranes at junctions between the plasma membrane and underlying cisterns of endoplasmic reticulum in amphioxus muscle and mouse cerebellar neurons was studied using the freeze-fracture technique. In amphioxus muscle, subsurface cisterns of sarcoplasmic reticulum form junctions with the surface membrane at the level of the sarcomere I bands. On the protoplasmic leaflet of the sarcolemma overlying these junctions were aggregates of large particles. On the protoplasmic leaflet of the membranes of cerebellar basket, stellate and Purkinie cells there were similar aggregates of large particles. In both tissues, the corresponding external membrane halves had arrays of pits apparently complementary to the aggregates of large particles. Cross fractures through junctions showed that the particle aggregates in neuronal and muscle membranes were consistently located over intracellular cisterns closely applied to the plasma membrane. Thus, a similar plasma membrane specialization is found at subsurface cisterns in mammalian neurons and amphioxus muscle. This similarity supports the hypothesis that subsurface cisterns in neurons, like those in muscle, couple some intracellular activity to the electrical activity of the plasma membrane.


Blood ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 583-594 ◽  
Author(s):  
N Dainiak ◽  
CM Cohen

Abstract In order to examine the contribution of cell surface materials to erythroid burst-promoting activity (BPA), we separated media conditioned by a variety of human cell types into pellets and supernatants by centrifugation. When added to serum-restricted cultures of nonadherent human marrow cells, pellets contained about half of the total stimulatory activity. Freeze-fracture electron microscopy of the pellets revealed the presence of unilamellar membrane vesicles ranging from 0.10 to 0.40 microM in diameter. The amount of BPA in culture increased with added vesicle concentration in a saturable fashion. Preparation of leukocyte conditioned medium (LCM) from 125I-wheat germ agglutinin labeled cells and studies comparing the glycoprotein composition of vesicles with that of leukocyte plasma membranes suggest that LCM-derived vesicles are of plasma membrane origin. Moreover, partially purified leukocyte plasma membrane preparations also contained BPA. While disruption of vesicles by freezing/thawing and hypotonic lysis did not alter BPA, heat, trypsin, or pronase treatment removed greater than 65% of BPA, implying that vesicle surface rather than intravesicular molecules express BPA. Results of BPA assays performed in two-layer clots indicated that proximity to target cells is required for vesicle BPA expression. We conclude that membrane vesicles spontaneously shed from cell surfaces may be important regulators of erythroid burst proliferation in vitro.


1977 ◽  
Vol 55 (8) ◽  
pp. 876-885 ◽  
Author(s):  
Patricia L. Chang ◽  
John R. Riordan ◽  
Mario A. Moscarello ◽  
Jennifer M. Sturgess

To study membrane biogenesis and to test the validity of the endomembrane flow hypothesis, incorporation of 32P and [Me-3H]choline in vivo into membranes of the rat liver was followed. Rough microsomal, Golgi-rich, and plasma membrane fractions were monitored with marker enzyme assays and shown with morphometric analysis to contain 82% rough microsomes, at least 70% Golgi complexes, and 88% plasma membranes, respectively. Membrane subfractions from the rough microsomal and Golgi-rich fractions were prepared by sonic disruption.At 5 to 30 min after 32P injection, the specific radioactivity of phosphatidylcholine was higher in the rough microsomal membranes than in the Golgi membranes. From 1 to 3 h, the specific activity of phosphatidylcholine in Golgi membranes became higher and reached the maximum at about 3 h. Although the plasma membrane had the lowest specific radioactivity throughout 0.25–3 h, it increased rapidly thereafter to attain the highest specific activity at 5 h. Both rough microsomal and plasma membranes reached their maxima at 5 h.The specific radioactivity of [32P]phosphatidylethanolamine in the three membrane fractions was similar to that of [32P]phosphatidylcholine except from 5 to 30 min, when the specific radioactivity of phosphatidylethanolamine in the Golgi membranes was similar to the rough microsomal membranes.At 15 min to 5 h after [Me-3H]choline injection, more than 90% of the radioactivity in all the membranes was acid-precipitable. The specific radioactivities of the acid-precipitated membranes, expressed as dpm per milligram protein, reached the maximum at 3 h. After [Me-3H]choline injection, the specific radioactivity of phosphatidylcholine separated from the lipid extract of the acid-precipitated membranes (dpm per micromole phosphorus) did not differ significantly in the three membrane fractions. The results indicated rapid incorporation of choline into membrane phosphatidylcholine by the rough endoplasmic reticulum, Golgi, and plasma membranes simultaneously.The data with both 32P and [Me-3H]choline precursors did not support the endomembrane flow hypothesis. The Golgi complexes apparently synthesized phosphatidylethanolamine and incorporated choline into phosphatidylcholine as well as the endoplasmic reticulum. The results are discussed with relevance to current hypotheses on the biogenesis and transfer of membrane phospholipids.


1993 ◽  
Vol 41 (5) ◽  
pp. 649-656 ◽  
Author(s):  
F W Kan

Previous freeze-fracture experiments using either glutaraldehyde-fixed and cryoprotected specimens or unfixed rapid-frozen samples led to the proposal that cylindrical strands of the tight junction (TJ) observed in freeze-fracture preparations are inverted cylindrical micelles made up of membrane lipids and, possibly, membrane proteins. However, no one has yet been able to directly label the structural fibrils of the TJ. To test the hypothesis that TJ strands observed on freeze-fracture preparations are composed at least partially of lipids, we have combined the phospholipase A2-gold and the fracture-label techniques for localization of phospholipids. Phospholipase A2, purified from bee venom, was adsorbed on gold particles and used for specific labeling of its substrate. Phospholipase A2-colloidal gold (PLA2-CG) complex was applied to freeze-fractured preparations of rat exocrine pancreatic cells and testicular Sertoli cells, both of which are known to have extensive TJ complexes on their plasma membranes. Fracture-label replicas of exocrine pancreatic cells revealed specific association of gold particles with TJ fibrils on the protoplasmic fracture-face of the plasma membrane. The majority of these gold particles were observed either directly on the top of the TJ fibrils or adjacent to these cylindrical structures. A high density of PLA2-CG labeling was also observed over the complementary exoplasmic fracture-face of the TJ complex. This intimate association of PLA2-CG labeling with the TJ is particularly evident in the Sertoli cell plasma membrane, where rows of gold particles were observed to be superimposed on parallel arrays of cylindrical strands of the TJ complex. The present findings provide direct cytochemical evidence to support the hypothesis that cylindrical TJ strands observed in freeze-fracture preparations contain phospholipids.


1958 ◽  
Vol 4 (1) ◽  
pp. 107-114 ◽  
Author(s):  
George A. Edwards ◽  
Helmut Ruska ◽  
Étienne de Harven

The peripheral nerve branch innervating the femoral muscles of the common yellow jacket (Vespula carolina) has been found to possess a thick lemnoblast basement membrane and a complex mesaxon. The term "tunicated nerve" is proposed to designate the type of peripheral nerve in which one or several axons are loosely mantled by meandering, cytoplasm-enclosing membranes of the lemnoblast. The peripheral axon courses longitudinally in a groove in the muscle fiber between the plasma membrane of the muscle fiber and a cap formed by lemnoblast and tracheoblast. The junction is characterized by apposition of plasma membranes of axon and muscle fiber, abundant mitochondria, and synaptic vesicles in the axon, and aggregates of "aposynaptic granules" plus mitochondria and endoplasmic reticulum on the muscle side of the synapse. Unlike the vertebrate striated muscle fiber, no complex infolding of the synapsing plasma membrane of the muscle fiber occurs. The "connecting tissue" of the insect is formed by tracheoblasts, their basement membranes, and the basement membranes of other cells. Further mechanical support is given by the ramifying tracheoles. The physiologic roles of the specialized structures are considered.


1958 ◽  
Vol 4 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Aaron J. Ladman

The fine structure of the rod-bipolar synapse is described and illustrated. Each rod spherule possesses a large, single, oval or elongate mitochondrion approximately 0.5 x 2.0 microns. Surrounding the mitochondrion are elements of agranular endoplasmic reticulum. The bipolar dendrite projects into the lower pole of the spherule and usually terminates in two lobes separated by a cleft. The plasma membranes appear dense and thicker in the region of the synapse. In the rod spherule cytoplasm, contiguous with the plasma membrane is a dense, slightly concave arciform structure, the rod arciform density, extending from the base of the bipolar bifid process through the cleft to an equivalent point on the opposite side. Also within the spherule, and external (towards the sclera) to the rod arciform density, is a parallel, dense, thin lamella, the rod synaptic lamella. This is approximately 25 mµ in thickness and 400 mµ in width at its widest extent. This halfmoon-shaped plate straddles the cleft between the two lobes of the bipolar process. The lamella appears to consist of short regular rodlets or cylinders 5 to 7 mµ in diameter, oriented with their long axes perpendicular to the plane of the lamella. Minute cytoplasmic vesicles found in the cytoplasm of both the rod spherule and the bipolar terminal are most abundant near the rod synaptic lamella.


1990 ◽  
Vol 38 (10) ◽  
pp. 1421-1426 ◽  
Author(s):  
M R Torrisi ◽  
A Pavan ◽  
L V Lotti ◽  
G Migliaccio ◽  
M C Pascale ◽  
...  

We have compared in the same cell type the surface distribution and partition in freeze-fractured plasma membranes of Sindbis virus glycoproteins in three different situations: (i) in permanently transformed cells that express the glycoproteins as the only viral product; (ii) in cells in which prebound viruses were forced to fuse with the plasma membrane by low pH treatment; (iii) in virus-infected cells. We report here that the viral proteins expressed on the surface of transfected cells show a uniform and unclustered distribution; conversely, in Sindbis virus-infected cells they appear clustered, regionally distributed, and always associated with budding viruses (i.e., interacting with the nucleocapsid on the cytosolic side of the membrane). Furthermore, the viral proteins expressed on transfected cells or implanted by low pH-mediated fusion partition during freeze-fracture with the exoplasmic faces of the cell plasma membranes, whereas an opposite partition is observed in infected cells. These results strongly suggest that in infected cells the clustering and the partition with the protoplasmic faces of the plasma membrane depend only on the strong "anchorage" of the glycoproteins to the nucleocapsid.


1984 ◽  
Vol 99 (2) ◽  
pp. 390-402 ◽  
Author(s):  
D Zucker-Franklin ◽  
S Petursson

The origin of platelets (Pt) from megakaryocytes (MK) is beyond question, but the mechanism whereby Pts are released from the precursor cell is still debated. A widely-held theory claims that the MK plasma membrane invaginates to form demarcation membranes (DMS), which delineate Pt territories. Accordingly, Pts would be derived mostly from the periphery of the MK, and the MK and Pt plasma membranes would have to be virtually identical. Since, on morphologic grounds, this theory is untenable, several aspects of thrombocytopoiesis were reexamined with the help of membrane tracer and freeze-fracture analyses of freshly-collected human and cultured mouse MK. To our surprise, freeze-cleavage of the MK plasma membrane revealed that the vast majority of intramembranous particles (IMP) remained associated with the protoplasmic leaflet (P face), whereas the partition coefficient of IMPs of the platelet membrane was the reverse. This is the first time that any difference between MK and Pt membranes has been determined. Replicas of freeze-fractured MK that were in the process of thrombocytopoiesis revealed an additional novel phenomenon, i.e., numerous areas of membrane discontinuity that appeared to be related to Pt discharge. When such areas were small, the IMP were lined up along the margin of the crevice. At a later phase, a labyrinth of fenestrations was observed. Thin sections of MK at various stages of differentiation showed that Pt territories were fully demarcated before connections of the DMS with the surface could be found. Therefore, the Pt envelope is probably not derived from invaginations of the MK plasma membrane. When living, MK were incubated with cationic ferritin or peroxidase at 37 degrees C, the tracers entered into the DMS but did not delineate all membranes with which the DMS was in continuity, suggesting the existence of distinctive membrane domains. Interiorization of tracer was not energy-dependent, but arrested at low temperatures. At 4 degrees C the DMS remained empty, unless there was evidence that Pts had been released. In such instances, the tracers outlined infoldings of peripheral cytoplasm that was devoid of organelles. Thus, the majority of Pts seem to originate from the interior of the MK, and the surface membranes of the two cells differ in origin and structure. The observations do not only throw new light on the process of thrombocytopoiesis, but also strengthen the possibility that MKs and Pts may be subject to different stimuli.


1963 ◽  
Vol 17 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Toshiyuki Yamamoto

Peak-to-peak distances between two dense lines of the unit membranes of cell organelles were measured on electron micrographs. These distances were compared with corresponding measurements on the plasma membrane and assigned a percentage value. The comparison between organelle and plasma membrane was always carried out with the same negative, in order to exclude as far as possible errors due to differences in focus or other causes. It was revealed by this study that the membranous structures of the cell can be classified into two groups, one thicker and one thinner. Unit membranes of the thicker group (synaptic vesicles, vesicles and capsules of multivesicular bodies, Golgi vesicles) were not significantly different in thickness from the plasma membrane. Unit membranes of the thinner group (mitochondria, nuclear membranes, Golgi lamellae, endoplasmic reticulum), however, were between 85 and 90 per cent of the thickness of the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document