scholarly journals Immunocytochemical localization of catalase in rat liver.

1981 ◽  
Vol 29 (7) ◽  
pp. 805-812 ◽  
Author(s):  
S Yokota ◽  
H D Fahimi

The intracellular localization of catalase has been studied using monospecific Fab fragments against rat liver catalase (RLC) and preembedding immunoelectron microscopy. Purified RLC, exhibiting a single band on sodium dodecyl sulfate gel electrophoresis, was used for the immunization of rabbits. The anti-RLC IgG was purified by affinity chromatography. Fab fragments were obtained by papain digestion and were labeled with horseradish peroxidase (HRP) using a modified two-step procedure and glutaraldehyde as coupling agents. Livers were perfused with 4% depolymerized paraformaldehyde and chopper sections were incubated with HRP-labeled Fab fragments against RLC. Because of the limited penetration of labeled Fab fragments into chopper sections a simple method for preparation of a cell suspension from aldehyde-fixed livers was devised. Adequate staining of more than 90% of cell was obtained by incubation of cell suspensions for 12--18 hr with the labeled antibody. By light microscopy specific staining was present in fine granules in the cytoplasm of hepatocytes. By electron microscopy the electron-dense reaction product was localized in the matrix of peroxisomes with no reaction in the endoplasmic reticulum and the Golgi complex. In some hepatocytes, positively reacted peroxisomes were seen side by side with unstained particles. Although focal diffusion was noted around a few peroxisomes, no evidence of cytoplasmic catalase independent of peroxisomes was found. These observations indicate that in rat liver peroxisomes are the only organelle containing substantial amounts of catalase antigen and rule out any involvement of the endoplasmic reticulum and the Golgi complex in the sequestration of this protein.

1970 ◽  
Vol 116 (2) ◽  
pp. 299-302 ◽  
Author(s):  
V. B. Delaney ◽  
T. F. Slater

A simple method is described that allows a rapid separation of a cell-sap fraction from the large-particle fraction of rat liver suspensions. The method is based on the filtration under suction of liver suspensions through Millipore filters that retain nuclei, mitochondria and some of the endoplasmic-reticulum fraction, but allow quantitative passage of cell sap into a collecting tube. The cell sap may be separated in this manner within 2min of the death of the rat. The method was applied to study the intracellular distribution of ATP and of the nicotinamide–adenine dinucleotides and the results obtained were compared with those obtained after separating the cell sap by a rapid centrifuging procedure. The percentage of total liver ATP in the cell sap was found to be 46% by the filtration method and more than 70% by the centrifuging procedure. Corresponding figures found for the distribution of NADP++NADPH were 40 and 49% respectively.


Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


1991 ◽  
Vol 266 (7) ◽  
pp. 4322-4328 ◽  
Author(s):  
P Moreau ◽  
M Rodriguez ◽  
C Cassagne ◽  
D M Morré ◽  
D J Morré

1985 ◽  
Vol 232 (1) ◽  
pp. 71-78 ◽  
Author(s):  
J A Hedo ◽  
I A Simpson

We investigated the biosynthesis of the insulin receptor in primary cultures of isolated rat adipose cells. Cells were pulse-chase-labelled with [3H]mannose, and at intervals samples were homogenized. Three subcellular membrane fractions were prepared by differential centrifugation: high-density microsomal (endoplasmic-reticulum-enriched), low-density microsomal (Golgi-enriched), and plasma membranes. After detergent solubilization, the insulin receptors were immunoprecipitated with anti-receptor antibodies and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and autoradiography. After a 30 min pulse-label [3H]mannose first appeared in a band of Mr 190 000. More than 80% of the Mr-190 000 component was recovered in the microsomal fractions. Its intensity reached a maximum at 1 h in the high-density microsomal fraction and at 2 h in the low-density microsomal fraction, and thereafter declined rapidly (t 1/2 approx. 3 h) in both fractions. In the plasma-membrane fraction, the radioactivity in the major receptor subunits, of Mr 135 000 (alpha) and 95 000 (beta), rose steadily during the chase and reached a maximum at 6 h. The Mr-190 000 precursor could also be detected in the high-density microsomal fraction by affinity cross-linking to 125I-insulin. In the presence of monensin, a cationic ionophore that interferes with intracellular transport within the Golgi complex, the processing of the Mr-190 000 precursor into the alpha and beta subunits was completely inhibited. Our results suggest that the Mr-190 000 pro-receptor originates in the endoplasmic reticulum and is subsequently transferred to the Golgi complex. Maturation of the pro-receptor does not seem to be necessary for the expression of the insulin-binding site. Processing of the precursor into the mature receptor subunits appears to occur during the transfer of the pro-receptor from the Golgi complex to the plasma membrane.


1977 ◽  
Vol 55 (4) ◽  
pp. 408-414 ◽  
Author(s):  
J. C. Jamieson

Ultrasonic extracts of rough and smooth endoplasmic reticulum fractions and Golgi fractions from rat liver were examined by immunoelectrophoresis using antiserum to α1-acid glycoprotein. Rough endoplasmic reticulum fractions contained only sialic acid free α1-acid glycoprotein, whereas smooth endoplasmic reticulum and Golgi fractions also contained sialic acid containing α1-acid glycoprotein. Determination of the sialic acid contents of immune precipitates isolated from the extracts suggested that the Golgi complex was the main site of addition of sialic acid to α1-acid glycoprotein. Immunological studies on puromycin extracts of polyribosomes showed that polypeptide chains of α1-acid glycoprotein and albumin were assembled mainly on membrane-bound polyribosomes. Evidence is presented from incorporation studies with labelled leucine and glucosamine that initial glycosylation of α1-acid glycoprotein occurs mainly or entirely after release of nascent polypeptide from the ribosomal site.


1985 ◽  
Vol 33 (5) ◽  
pp. 407-414 ◽  
Author(s):  
B Clement ◽  
M Rissel ◽  
S Peyrol ◽  
Y Mazurier ◽  
J A Grimaud ◽  
...  

Experimental conditions have been designed that permit both extracellular and intracellular immunolocalization of various collagen types and fibronectin in rat liver. The procedure involves paraformaldehyde fixation by perfusion of the organ, use of saponin as a membrane permeabilizing agent, and visualization of the matrix components by indirect immunoperoxidase. Intracellular demonstration of collagens was particularly sensitive to the composition of the fixative and the duration of fixation. Hepatocytes contained fibronectin and types I and IV collagen, whereas fat-storing and endothelial cells evidenced type III collagen in addition. All the components were specifically located in the endoplasmic reticulum and/or the Golgi apparatus.


1981 ◽  
Vol 91 (3) ◽  
pp. 679-688 ◽  
Author(s):  
A Ravoet ◽  
A Amar-Costesec ◽  
D Godelaine ◽  
H Beaufay

To establish on a quantitative basis the subcellular distribution of the enzymes that glycosylate dolichyl phosphate in rat liver, preliminary kinetic studies on the transfer of mannose, glucose, and N-acetylglucosamine-1-phosphate from the respective (14)C- labeled nucleotide sugars to exogenous dolichyl phosphate were conducted in liver microsomes. Mannosyltransferase, glucosyltransferase, and, to a lesser extent, N- acetylglucosamine-phosphotransferase were found to be very unstable at 37 degrees C in the presence of Triton X-100, which was nevertheless required to disperse the membranes and the lipid acceptor in the aqueous reaction medium. The enzymes became fairly stable in the range of 10-17 degrees C and the reactions then proceeded at a constant velocity for at least 15 min. Conditions under which the reaction products are formed in amount proportional to that of microsomes added are described. For N- acetylglucosaminephosphotransferase it was necessary to supplement the incubation medium with microsomal lipids. Subsequently, liver homogenates were fractionated by differential centrifugation, and the microsome fraction, which contained the bulk of the enzymes glycosylating dolichyl phosphate, was analyzed by isopycnic centrifugation in a sucrose gradient without any previous treatment, or after addition of digitonin. The centrifugation behavior of these enzymes was compared to that of a number of reference enzymes for the endoplasmic reticulum, the golgi complex, the plasma membranes, and mitochondria. It was very simily to that of enzymes of the endoplasmic reticulum, especially glucose-6-phosphatase. Subcellular preparations enriched in golgi complex elements, plasma membranes, outer membranes of mitochondira, or mitoplasts showed for the transferases acting on dolichyl phosphate relative activities similar to that of glucose- 6-phosphatase. It is concluded that glycosylations of dolichyl phosphate into mannose, glucose, and N-acetylglucosamine-1-phosphate derivatives is restricted to the endoplasmic reticulum in liver cells, and that the enzymes involved are similarly active in the smooth and in the rough elements.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2585-2593 ◽  
Author(s):  
JA Bristol ◽  
JV Ratcliffe ◽  
DA Roth ◽  
MA Jacobs ◽  
BC Furie ◽  
...  

Prothrombin is a vitamin K-dependent blood coagulation protein that undergoes posttranslational gamma-carboxylation and propeptide cleavage during biosynthesis. The propeptide contains the gamma-carboxylation recognition site that directs gamma-carboxylation. To identify the intracellular sites of carboxylation and propeptide cleavage, we monitored the synthesis of prothrombin in Chinese hamster ovary cells stably transfected with the prothrombin cDNA by immunofluorescent staining. The vitamin K-dependent carboxylase was located in the endoplasmic reticulum and Golgi complex. Antibodies specific to prothrombin processing intermediates were used for immunocytolocalization. Anti-des-gamma-carboxyprothrombin antibodies stained only the endoplasmic reticulum whereas antiproprothrombin antibodies (specific for the propeptide) and antiprothrombin:Mg(II) antibodies (which bind the carboxylated forms of proprothrombin and prothrombin) stained both the endoplasmic reticulum and the Golgi complex. Antiprothrombin:Ca(II)-specific antibodies (which bind only to the carboxylated form of prothrombin lacking the propeptide) stained only the Golgi complex and secretory vesicles, and colocalized with antimannosidase II and anti-p200 in the juxtanuclear Golgi complex. These results indicate that uncarboxylated proprothrombin undergoes complete gamma-carboxylation in the endoplasmic reticulum and that gamma-carboxylation precedes propeptide cleavage during prothrombin biosynthesis.


1985 ◽  
Vol 232 (2) ◽  
pp. 485-491 ◽  
Author(s):  
R Hopewell ◽  
P Martin-Sanz ◽  
A Martin ◽  
J Saxton ◽  
D N Brindley

The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, α-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.


Sign in / Sign up

Export Citation Format

Share Document