scholarly journals Rapid-freezing and malachite green-acrolein-osmium tetroxide freeze-substitution fixation improve visualization of extracellular lipids in rat incisor pre-dentin and dentin.

1987 ◽  
Vol 35 (4) ◽  
pp. 427-433 ◽  
Author(s):  
M Goldberg ◽  
F Escaig

Rat incisor tissue sections were fixed by a modified version of the malachite green-aldehyde method (MGA) composed of rapid-freezing, malachite green-acrolein staining, and osmium tetroxide freeze-substitution (Fr.MGAO). In the pre-dentin, a thick, dense network of branched fibrous structures was observed. Cryotechniques allowed visualization of complexes about twice as thick and dense as the aggregates visualized on MGA-treated sections. Pretreatment of rapid-frozen samples with methanol before freeze-substitution fixation and staining prevented staining of the complexes otherwise revealed by the Fr.MGAO method. Electron-dense material stained by this procedure resisted de-mineralization with EDTA, while intramitochondrial granules and dentin crystallites were dissolved. EDTA treatment demonstrated unequal distribution of Fr.MGAO staining in dentin in the form of tiny dots underlining the collagen fibers. These results support the concept that rapid-freezing, followed by staining and freeze-substitution fixation, improves preservation of the phospholipids visualized as extracellular matrix components in pre-dentin and dentin of rat incisors.

Author(s):  
Seiji Shioda ◽  
Yasumitsu Nakai ◽  
Atsushi Ichikawa ◽  
Hidehiko Ochiai ◽  
Nobuko Naito

The ultrastructure of neurosecretory cells and glia cells in the supraoptic nucleus (SON) of the hypothalamus and the neurohypophysis (PN) was studied after rapid freezing followed by substituion fixation. Also, the ultrastructural localization of vasopressin (VP) or its carrier protein neurophys in II (NPII) in the SON and PN was demonstrated by using a post-embedding immunoco1loidal gold staining method on the tissue sections processed by rapid freezing and freeze-substitution fixation.Adult male Wistar rat hypothalamus and pituitary gland were quenched by smashing against a copper block surface precooled with liquid helium and freeze-substituted in 3% osmium tetroxide-acetone solutions kept at -80°C for 36-48h. After substituion fixation, the tissue blocks were warmed up to room temperature, washed in acetone and then embedded in an Epon-Araldite mixture. Ultrathin sections mounted on 200 mesh nickel grids were immersed in saturated sodium metaperiodate and then incubated in each of the following solutions: 1 % egg albumin in phosphate buffer, VP or NPII (1/1000-1/5000) antiserum 24h at 4°C, 3) colloidal gold solution (1/20) 1h at 20°C. The sections were washed with distilled waterand dried, then stained with uranylacetate and lead citrate and examined with Hitachi HU-12A and H-800 electron microscopes.


1958 ◽  
Vol 4 (5) ◽  
pp. 593-602 ◽  
Author(s):  
Ned Feder ◽  
Richard L. Sidman

Freeze-substitution is based on rapid freezing of tissues followed by solution ("substitution") of ice at temperatures well below O°C. A 1 to 3 mm. specimen was thrown into 3:1 propane-isopentane cooled by liquid nitrogen to -175°C. (with precautions). The frozen tissue was placed in substituting fluid at -70°C. for 1 week to dissolve ice slowly without distorting tissue structure. Excess substituting agent was washed out, and the specimen was embedded, sectioned, and stained conventionally. For best morphological and histochemical preservation, substituting fluids should in general contain both chemical fixing agent and solvent for ice, e.g., 1 per cent solutions of osmium tetroxide in acetone, mercuric chloride in ethanol, and picric acid in ethanol. Preservation of structure was poorer after substitution in solvent alone. Evidence was obtained that the chemical agent fixes tissue at low temperatures. The chemical mechanisms of fixation are probably similar to those operating at room temperature: new chemical cross-linkages, which contain the fixing agent, join tissue constituents together. This process is distinguished from denaturation by pure solvents. Freeze-substitution has many advantages, particularly the preservation of structure to the limit of resolution with the light microscope, and the accurate localization of many soluble and labile substances.


Author(s):  
Julian P. Heath ◽  
Donna Turner

We are using rapid freezing and freeze substitution to study the three dimensional organisation of membrane systems and cytoskeletal filaments in motile fibroblasts. This study has two objectives: first, to provide material for structural and immunocytochemical analysis of membrane-cytoskeletal interactions in cells that have been preserved with minimum artefact (1,2,3) and second, to refine and develop existing rapid freezing and freeze substitution techniques to allow for the study of single cells that have been experimentally manipulated and observed by digital video microscopy before fixation.The cells used were human lung fibroblasts (IMR90) either growing on Lux Thermanox coverslips or as pelleted suspensions. The cells were slam frozen on a Med-Vac Cryo Press against a liquid nitrogen cooled copper block. Coverslips were trimmed to 2 x 2 mm in size, excess fluid was drained off, and they were placed on top of a 1mm thick gelatin cushion on an aluminium planchette. For cell suspensions, 3 ul was placed on top of the gelatin cushion. Frozen samples were placed in acetone containing 1% osmium tetroxide for 72 hours at 192 K, wanned to 253 K for 4 hours, and then brought to room temperature. The samples were rinsed in acetone and embedded in Spurr’s resin. Thin sections were cut on a RMC6000 ultramicrotome, stained in uranyl acetate and Reynolds' lead citrate and photographed on a Philips EM410 electron microscope at 60 keV.


Author(s):  
Wilma L. Lingle ◽  
David Porter ◽  
Marshall Darley

The red algae have been difficult to preserve for TEM observation. In an effort to overcome the limitations of conventional, aqueous fixations, we used rapid freezing techniques that are superior in preserving delicate and transient membrane features. Laboratory cultures of the red alga Caloglossa leprieurii were prepared for TEM by rapid freezing in liquid propane followed by substitution at -80° in 2% osmium tetroxide and 0.05% uranyl acetate in dry acetone for 65 hours. While in substitution fluid, the tissue was allowed to come to room temperature over a 6 hour period. The fluidwas replaced with dry acetone, followed by two 30 minute washes. Infiltration with Embed 812 without accelerator was performed at 4° on a tumbler in increments of 12.5% changed every 12 hours. Five percent increments were utilized from 75% to 100%. Three 24 hour exchanges with 100% resin including accelerator took place alternately under vacuum at room temperature for 8 hours, then at 4°on a tumbler for 16 hours. The tissue was cured at 60°.


1987 ◽  
Vol 35 (6) ◽  
pp. 647-655 ◽  
Author(s):  
E B Hunziker ◽  
W Herrmann

Localization and distribution of proteoglycans within rat growth plate cartilage were investigated by immunoelectron microscopy. By use of a mixture of three monoclonal antibodies directed against chondroitin sulfate chains and of post-embedding staining by protein A-gold, the immunosensitivity and resolution achieved by electron microscopy within tissue processed by high-pressure freezing, freeze-substitution, and low-temperature embedding were compared with those in tissue preserved by three alternative procedures (i.e., mild chemical fixation in combination with either low-temperature embedding or conventional embedding, and high-pressure freezing and freeze-substitution followed by conventional embedding). The loss of matrix components incurred during each stage of high-pressure freezing, freeze-substitution, and low temperature embedding was also determined by measuring the loss of [35S]-proteoglycans from tissue labeled in vivo, and the results compared with previously determined estimates for tissue processed using conventional techniques. Immunosensitivity, determined as the number of gold particles per unit area, was highest in tissue processed by high-pressure freezing, freeze substitution, and low-temperature embedding. Comparable results (with a reduction of only 3-7%) were achieved within tissue preserved by mild chemical fixation followed by low-temperature embedding. In both procedures where conventional embedding was adopted, sensitivity was considerably reduced (by 51% for high-pressure freezing and freeze substitution and by 74% for mild chemical fixation). Loss of matrix components was negligible during all stages of high-pressure freezing, freeze-substitution, and low-temperature embedding. Such information, and that derived from morphological inspection of the various matrix compartments in cartilage processed by high-pressure freezing, freeze-substitution, and low-temperature embedding (J Cell Biol 98:277, 1984), together demonstrate that application of this technique results in successful immobilization of proteoglycans in situ within cartilage matrix. Although loss of proteoglycans from mildly fixed cartilage embedded under low-temperature conditions is minor, morphological examination of this tissue reveals considerable shifting of proteoglycans within matrix compartments. Hence, even though immunosensitivity may be high, resolution is poor. The beauty of the high-pressure freezing, freeze-substitution, and low-temperature embedding technique is that it combines high immunosensitivity with precise localization of matrix components at the molecular level.


Author(s):  
Bert Ph. M. Menco

Vertebrate olfactory receptor cells are specialized neurons that have numerous long tapering cilia. The distal parts of these cilia line the interface between the external odorous environment and the luminal surface of the olfactory epithelium. The length and number of these cilia results in a large surface area that presumably increases the chance that an odor molecule will meet a receptor cell. Advanced methods of cryoprepration and immuno-gold labeling were particularly useful to preserve the delicate ultrastructural and immunocytochemical features of olfactory cilia required for localization of molecules involved in olfactory signal-transduction. We subjected olfactory tissues to freeze-substitution in acetone (unfixed tissues) or methanol (fixed tissues) followed by low temperature embedding in Lowicryl K11M for that purpose. Tissue sections were immunoreacted with several antibodies against proteins that are presumably important in olfactory signal-transduction.


Author(s):  
Liza B. Martinez ◽  
Susan M. Wick

Rapid freezing and freeze-substitution have been employed as alternatives to chemical fixation because of the improved structural preservation obtained in various cell types. This has been attributed to biomolecular immobilization derived from the extremely rapid arrest of cell function. These methods allow the elimination of conventionally used fixatives, which may have denaturing or “masking” effects on proteins. Thus, this makes them ideal techniques for immunocytochemistry, in which preservation of both ultrastructure and antigenicity are important. These procedures are also compatible with cold embedding acrylic resins which are known to increase sensitivity in immunolabelling.This study reveals how rapid freezing and freeze-substitution may prove to be useful in the study of the mobile allergenic proteins of rye grass and ragweed. Most studies have relied on the use of osmium tetroxide to achieve the necessary ultrastructural detail in pollen whereas those that omitted it have had to contend with poor overall preservation.


Author(s):  
Marie-Thérèse Nicolas

An alternative to aqueous chemical fixation consists in immobilizing physically the specimen by freezing it as fast as possible without using any cryoprotectant. This Fast Freeze Fixation (FFF) followed by Freeze Substitution (FS) avoids osmotic artefacts due to the slow penetration of liquid chemical fixative. Associated with Immuno-Gold labeling (IGS), FFF-FS allows a more precise localization of antigens.Using the bioluminescent bacteria Vibrio harveyi, a comparison of IGS with an antibody directed against its luciferase (enzyme of the luminescent reaction) has been done after liquid chemical fixation versus FFFFS. This later technique, beside an expected improvement of the ultrastructure always shows a better preservation of antigenicity and a lower background. In the case of FFF-FS technique (Figure 3):–labeling in acrylic resin (LRWhite) is 2 to 4 fold more intense than in epoxy resin (Epon),–but the ultrastructure is always better in Epon.–but the ultrastructure is always better in Epon.–The addition of fixatives in the substitution medium, results in a decrease of labeling which is more important in the case of a mixture of fixatives than with osmium tetroxide alone; with one exception: the substitution with glutaraldehyde which produces a dramatic increase in the density of the labeling but also, at the same time, a swelling of the cells of about 30%.


Sign in / Sign up

Export Citation Format

Share Document