scholarly journals Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series.

1993 ◽  
Vol 41 (5) ◽  
pp. 759-764 ◽  
Author(s):  
M L Kortelainen ◽  
G Pelletier ◽  
D Ricquier ◽  
L J Bukowiecki

We used an immunohistochemical method for the inner mitochondrial membrane uncoupling protein (UCP) to examine whether human brown adipose tissue UCP could be detected by an anti-rat UCP antibody. Samples of human brown adipose tissue were obtained at medicolegal autopsies. Fat tissue was excised from around the common carotid arteries and in the subscapular region and from around the thoracic aorta. The subjects were either known alcohol consumers, in which thermogenically active brown adipose tissue (BAT) is often found, or victims of sudden infant death syndrome (SID). UCP was detected in all the cases examined, even when the post-mortem time from death to autopsy reached several days, but the intensity of the immunostaining was variable. Intense staining was observed in three cases with a post-mortem time under 24 hr, but in the SID cases a strong positive staining was seen even with a post-mortem delay of 4 days. These results show that an anti-rat UCP antibody can be used for immunohistochemical detection of UCP in human brown adipose tissue and that it provides a useful method for distinguishing between white and brown fat in paraffin-embedded samples. It can be used to detect UCP in the BAT of obese and diabetic individuals and probably also in the histopathological diagnosis of brown adipose tissue lipoma, known as hibernoma.

1994 ◽  
Vol 269 (10) ◽  
pp. 7435-7438
Author(s):  
D.L. Murdza-Inglis ◽  
M. Modriansky ◽  
H.V. Patel ◽  
G. Woldegiorgis ◽  
K.B. Freeman ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


1995 ◽  
Vol 268 (1) ◽  
pp. R183-R191 ◽  
Author(s):  
A. M. Strack ◽  
M. J. Bradbury ◽  
M. F. Dallman

Brown adipose tissue (BAT) contains glucocorticoid receptors; glucocorticoids are required for maintaining differentiated BAT in culture. These studies were performed to determine the effects of corticosterone on BAT thermogenic function and lipid storage. Rats were adrenalectomized and given subcutaneous corticosterone pellets in concentrations that maintained plasma corticosterone constant across the range of 0-20 micrograms/dl or were sham adrenalectomized. All variables were examined 5 days after surgery and corticosterone replacement. Measures of BAT function-thermogenic capacity [guanosine 5'-diphosphate (GDP) binding and uncoupling protein (UCP; a BAT-specific thermogenic protein)] and storage (BAT wet wt, protein, and DNA levels) were made. Plasma hormones (corticosterone, adrenocorticotropic hormone, insulin, 3,3',5-triiodothyronine, and thyroxine were measured. Corticosterone significantly affected BAT thermogenic measures: UCP content and binding of GDP to BAT mitochondria decreased with increasing corticosterone; GDP binding characteristics in BAT from similarly prepared rats examined by Scatchard analysis showed that maximum binding (Bmax) and dissociation constant (Kd) decreased with increasing corticosterone dose. BAT DNA was increased by adrenalectomy and maintained at intact levels with all doses of corticosterone; BAT lipid storage increased dramatically at corticosterone values higher than the daily mean level in intact rats. Histologically, the number and size of lipid droplets within BAT adipocytes increased markedly with increased corticosterone. White adipose depots were more sensitive to circulating corticosterone concentrations than were BAT depots and increased in weight at levels of corticosterone that were at or below the daily mean level of intact rats. We conclude that, within its diurnal range of concentration corticosterone acts to inhibit nonshivering thermogenesis and increase lipid storage.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 317 (5) ◽  
pp. E742-E750 ◽  
Author(s):  
Tania Quesada-López ◽  
Aleix Gavaldà-Navarro ◽  
Samantha Morón-Ros ◽  
Laura Campderrós ◽  
Roser Iglesias ◽  
...  

Adaptive induction of thermogenesis in brown adipose tissue (BAT) is essential for the survival of mammals after birth. We show here that G protein-coupled receptor protein 120 (GPR120) expression is dramatically induced after birth in mouse BAT. GPR120 expression in neonatal BAT is the highest among GPR120-expressing tissues in the mouse at any developmental stage tested. The induction of GPR120 in neonatal BAT is caused by postnatal thermal stress rather than by the initiation of suckling. GPR120-null neonates were found to be relatively intolerant to cold: close to one-third did not survive at 21°C, but all such pups survived at 25°C. Heat production in BAT was significantly impaired in GPR120-null pups. Deficiency in GPR120 did not modify brown adipocyte morphology or the anatomical architecture of BAT, as assessed by electron microscopy, but instead impaired the expression of uncoupling protein-1 and the fatty acid oxidation capacity of neonatal BAT. Moreover, GPR120 deficiency impaired fibroblast growth factor 21 (FGF21) gene expression in BAT and reduced plasma FGF21 levels. These results indicate that GPR120 is essential for neonatal adaptive thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document