scholarly journals GPR120 controls neonatal brown adipose tissue thermogenic induction

2019 ◽  
Vol 317 (5) ◽  
pp. E742-E750 ◽  
Author(s):  
Tania Quesada-López ◽  
Aleix Gavaldà-Navarro ◽  
Samantha Morón-Ros ◽  
Laura Campderrós ◽  
Roser Iglesias ◽  
...  

Adaptive induction of thermogenesis in brown adipose tissue (BAT) is essential for the survival of mammals after birth. We show here that G protein-coupled receptor protein 120 (GPR120) expression is dramatically induced after birth in mouse BAT. GPR120 expression in neonatal BAT is the highest among GPR120-expressing tissues in the mouse at any developmental stage tested. The induction of GPR120 in neonatal BAT is caused by postnatal thermal stress rather than by the initiation of suckling. GPR120-null neonates were found to be relatively intolerant to cold: close to one-third did not survive at 21°C, but all such pups survived at 25°C. Heat production in BAT was significantly impaired in GPR120-null pups. Deficiency in GPR120 did not modify brown adipocyte morphology or the anatomical architecture of BAT, as assessed by electron microscopy, but instead impaired the expression of uncoupling protein-1 and the fatty acid oxidation capacity of neonatal BAT. Moreover, GPR120 deficiency impaired fibroblast growth factor 21 (FGF21) gene expression in BAT and reduced plasma FGF21 levels. These results indicate that GPR120 is essential for neonatal adaptive thermogenesis.

Author(s):  
Milessa Silva Afonso ◽  
Narendra Verma ◽  
Coen van Solingen ◽  
Yannick Cyr ◽  
Monika Sharma ◽  
...  

Objective: Recent studies have identified key transcriptional regulators of brown adipose tissue (BAT) differentiation and function, but posttranscriptional control of this network by microRNAs remains incompletely understood. MiR-33 critically regulates genes involved in metabolic pathways, including cholesterol efflux, reverse cholesterol transport, fatty acid oxidation, and autophagy. Given its role in metabolic homeostasis, we investigated whether miR-33 participates in the regulation of BAT activity, white adipose beiging, and adaptive thermogenesis. Approach and Results: Using primary immortalized brown adipocytes and 10T1/2 cells, we show that miR-33 levels are reduced in brown fat differentiated cells compared with preadipocytes and in response to thermogenic activators. Furthermore, in mice exposed to cold, levels of miR-33 in BAT are rapidly downregulated consistent with a role for miR-33 in repressing adaptive thermogenesis. Using in silico prediction, we identified numerous putative miR-33 target genes in the thermogenic pathway conserved in mice and humans, including regulators of brown adipocyte differentiation and function and mitochondrial activity. We focused our investigation on transcriptional regulators of UCP1 (uncoupling protein 1) and of BAT-enriched genes and demonstrate that miR-33 represses Zfp516 , Dio2 , and Ppargc1a in vitro and in vivo. Treatment of mice with inhibitors of miR-33 increased expression of these miR-33 target genes in brown and subcutaneous white adipose tissue, upregulating expression of UCP1, and rendering mice resistant to cold challenge. Conclusions: Collectively, our findings demonstrate that miR-33 targets key genes involved in BAT activation and white adipose beiging and expand our understanding of how miR-33 coordinately regulates pathways involved in metabolic homeostasis.


Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3484-3492 ◽  
Author(s):  
Keita Kinoshita ◽  
Nobuaki Ozaki ◽  
Yusuke Takagi ◽  
Yoshiharu Murata ◽  
Yoshiharu Oshida ◽  
...  

Abstract Glucagon, a counterregulatory hormone to insulin, serves as a regulator of glucose homeostasis and acts in response to hypoglycemia. Earlier studies have shown that glucagon administration induces thermogenesis in experimental animal models. However, it is not known whether endogenous glucagon is involved in the regulation of brown adipose tissue (BAT) function. Here we investigated the role of glucagon in cold-induced thermogenesis in male mice deficient in proglucagon-derived peptides (GCGKO mice). Upon exposure to cold, GCGKO mice exhibited a greater decrease in rectal temperature than control mice. The cold exposure-induced increase in oxygen consumption in GCGKO mice was less than that seen in control mice. Moreover, the increase in oxygen consumption after administration of a β3-adrenergic receptor agonist, CL-316,243, was also lesser in GCGKO than in control mice. Expression of thermogenic genes, including the gene encoding uncoupling protein 1 (Ucp1), was reduced in the BAT of GCGKO mice under ambient as well as cold conditions. Administration of glucagon restored the expression of Ucp1 mRNA in the BAT as well as the expression of the fibroblast growth factor 21 gene (Fgf21) in the liver. Supplementation with glucagon for 2 weeks resulted in higher plasma Fgf21 levels and improved responses to CL-316,243 in GCGKO mice. These results indicated that endogenous glucagon is essential for adaptive thermogenesis and that it regulates BAT function, most likely by increasing hepatic Fgf21 production.


2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


1994 ◽  
Vol 302 (3) ◽  
pp. 695-700 ◽  
Author(s):  
C Manchado ◽  
P Yubero ◽  
O Viñas ◽  
R Iglesias ◽  
F Villarroya ◽  
...  

CCAAT/enhancer-binding protein (C/EBP) alpha mRNA and its protein products C/EBP alpha and 30 kDa C/EBP alpha are expressed in rat brown-adipose tissue. Results also demonstrate the expression of C/EBP beta mRNA and its protein products C/EBP beta and liver inhibitory protein (LIP) in the tissue. The abundance of C/EBP alpha and C/EBP beta proteins in adult brown fat is similar to that found in adult liver. However, the expression of C/EBP alpha and C/EBP beta is specifically regulated in brown fat during development. C/EBP alpha, 30 kDa C/EBP alpha, C/EBP beta and LIP content is several-fold higher in fetal brown fat than in the adult tissue, or liver at any stage of development. Peak values are attained in late fetal life, in concurrence with the onset of transcription of the uncoupling protein (UCP) gene, the molecular marker of terminal brown-adipocyte differentiation. When adult rats are exposed to a cold environment, which is a physiological stimulus of brown-adipose tissue hyperplasia and UCP gene expression, a specific rise in C/EBP beta expression with respect to C/EBP alpha, 30 kDa C/EBP alpha and LIP is observed. Present data suggest that the C/EBP family of transcription factors has an important role in the development and terminal differentiation of brown-adipose tissue.


2009 ◽  
Vol 29 (4) ◽  
pp. 237-243 ◽  
Author(s):  
María del Mar Romero ◽  
José A. Fernández-López ◽  
Montserrat Esteve ◽  
Marià Alemany

In the present study we intended to determine how BAT (brown adipose tissue) maintained thermogenesis under treatment with OE (oleoyl-oestrone), a powerful slimming hormone that sheds off body lipid but maintains the metabolic rate. Overweight male rats were subjected to daily gavages of 10 nmol/g of OE or vehicle (control) for 10 days. A PF (pair-fed) vehicle-receiving group was used to discount the effects attributable to energy availability limitation. Interscapular BAT mass, lipid, DNA, mRNA and the RT-PCR (real-time PCR) expression of lipid and energy metabolism genes for enzymes and regulatory proteins were measured. BAT mass and lipid were decreased in OE and PF, with the latter showing a marked reduction in tissue mRNA. Maintenance of perilipin gene expression in PF and OE rats despite the loss of lipid suggests the preservation of the vacuolar interactive surface, a critical factor for thermogenic responsiveness. OE and, to a lesser extent, PF maintained the expression of genes controlling lipolysis and fatty acid oxidation, but markedly decreased the expression of those genes involved in lipogenic and acyl-glycerol synthesis. OE did not affect UCP1 (uncoupling protein 1) (decreased in PF), β3 adrenergic receptors or hormone-sensitive lipase gene mRNAs, which may translate in maintaining a full thermogenic system potential. OE rats were able to maintain a less energetically stressed BAT (probably through glucose utilization) than PF rats. These changes were not paralleled in PF rats, in which lower thermogenesis and glucose preservation resulted in a heavier toll on internal fat stores. Thus the mechanism of action of OE is more complex and tissue-specific than previously assumed.


2013 ◽  
Vol 305 (5) ◽  
pp. E567-E572 ◽  
Author(s):  
Joan Villarroya ◽  
Rubén Cereijo ◽  
Francesc Villarroya

White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.


2011 ◽  
Vol 300 (1) ◽  
pp. R1-R8 ◽  
Author(s):  
Tobias Fromme ◽  
Martin Klingenspor

Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Li ◽  
Li Li ◽  
Baoguo Li ◽  
Catherine Hambly ◽  
Guanlin Wang ◽  
...  

AbstractGut microbiota deficient mice demonstrate accelerated glucose clearance. However, which tissues are responsible for the upregulated glucose uptake remains unresolved, with different studies suggesting that browning of white adipose tissue, or modulated hepatic gluconeogenesis, may be related to enhanced glucose clearance when the gut microbiota is absent. Here, we investigate glucose uptake in 22 different tissues in 3 different mouse models. We find that gut microbiota depletion via treatment with antibiotic cocktails (ABX) promotes glucose uptake in brown adipose tissue (BAT) and cecum. Nevertheless, the adaptive thermogenesis and the expression of uncoupling protein 1 (UCP1) are dispensable for the increased glucose uptake and clearance. Deletion of Ucp1 expressing cells blunts the improvement of glucose clearance in ABX-treated mice. Our results indicate that BAT and cecum, but not white adipose tissue (WAT) or liver, contribute to the glucose uptake in the gut microbiota depleted mouse model and this response is dissociated from adaptive thermogenesis.


1999 ◽  
Vol 345 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Rosa ALVAREZ ◽  
MaLuz CHECA ◽  
Sonia BRUN ◽  
Octavi VI±AS ◽  
Teresa MAMPEL ◽  
...  

The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific {p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid} or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7,11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRα and RXRγ mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, α, β and γ, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARα and RARβ as well as RXRα are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte.


Sign in / Sign up

Export Citation Format

Share Document