Mitigation of liquefaction triggering due to bio-gas-induced desaturation using element tests and the strain energy approach

2021 ◽  
pp. 875529302110416
Author(s):  
Mohammad Hassan Baziar ◽  
Omid Eslami Amirabadi

Currently, conventional remediation of liquefaction triggering may have many environmental effects, and this important issue has led researchers to look for more sustainable methods. In this research, one of the new bio-improvement methods (biogas) has been used to generate gas bubbles within a soil, susceptible to liquefaction. Using this method, two bio materials create ammonium ions and carbonate, in which ammonium ion is converted into nitrate due to the presence of bacteria in water, and they are eventually converted to nitrogen gas in an anaerobic condition. The nitrogen bubbles created in water reduce the soil’s degree of saturation, which in effect increases the soil’s resistance to liquefaction occurrence. In this study, two sources of urease enzyme were used to reduce the soil degree of saturation. The effects of various parameters, including the optimum concentration of each substance for optimum time to generate gas bubbles, as well as the effect of the oxygen amount in water were investigated using monotonic triaxial tests. The results illustrated that the addition of the mentioned two substances to the oxab (water with 60 ppm oxygen) or tap water decreased the pore water pressure due to desaturation. Finally, the energy approach was used to test the substance containing the amount of oxab with the highest decrease in pore water generation, here called “optimum selection,” in the cyclic triaxial device, and the results were analyzed to evaluate liquefaction occurrence. The outcome of these results revealed that compared with the strain energy of the non-treated sample, the treated sample had a much higher strain energy; in other words, the treated sample needed a larger amount of loading to trigger liquefaction.

2019 ◽  
Vol 92 ◽  
pp. 08008
Author(s):  
Bozana Bacic ◽  
Ivo Herle

Time-consuming and complicated investigations of soil liquefaction in cyclic triaxial tests are the most common way of laboratory analysis of this phenomenon. Moreover, the necessary equipment for the performance of cyclic triaxial tests is very expensive. Much simpler method for laboratory testing of the soil liquefaction has been developed at the Institute of Geotechnical Engineering at the TU Dresden. This method takes into account the pore water pressure build-up during cyclic shearing within a short time period. During the test, the soil sample is subjected to horizontal cyclic loading and the generated pore water pressure is measured. In the first series of these experiments, a dependence of the pore water pressure buildup on the initial density of soil could be observed, as expected. When comparing different soils, it is shown that the tendency to liquefaction depends also on the granulometric properties (e.g. grain size distribution) of the soil. The aim of the further development is to establish a simple identification test for laboratory testing of the soil liquefaction.


2020 ◽  
Author(s):  
Gerd Gudehus

AbstractWhile Terzaghi justified his principle of effective stress for water-saturated soil empirically, it can be derived by means of the neutrality of the mineral with respect to changes of the pore water pressure $$p_w$$ p w . This principle works also with dilating shear bands arising beyond critical points of saturated grain fabrics, and with patterns of shear bands as relics of critical phenomena. The shear strength of over-consolidated clay is explained without effective cohesion, which results also from swelling up to decay, while rapid shearing of water-saturated clay can lead to a cavitation of pore water. The $$p_w$$ p w -neutrality is also confirmed by triaxial tests with sandstone samples, while Biot’s relation with a reduction factor for $$p_w$$ p w is contestable. An effective stress tensor is heuristically legitimate also for soil and rock with relics of critical phenomena, particularly for critical points with a Mohr–Coulomb condition. Therein, the $$p_w$$ p w -neutrality of the solid mineral determines the interaction of solid fabric and pore water, but numerical models are questionable due to fractal features.


2015 ◽  
Vol 23 (2) ◽  
pp. 9-18 ◽  
Author(s):  
Mohammed Y. Fattah ◽  
Raid R. Al-Omari ◽  
Haifaa A. Ali

Abstract In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh) in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure) decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model) increase, the axial movement (swelling movement) and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


1969 ◽  
Vol 6 (3) ◽  
pp. 241-252 ◽  
Author(s):  
D. A. Sangrey ◽  
D. J. Henkel ◽  
M. I. Esrig

The results of a series of tests designed to examine the behavior of saturated clay soil under repeated loading are reported. Triaxial tests, under conditions of axial symmetry, were used and the rates of deformation were chosen so as to permit the accurate measurement of pore water pressure at all stages of the tests.It was found that, for any particular consolidation history, a critical level of repeated stress existed. Below this critical level, a state of nonfailure equilibrium was reached in which the stress-strain curves followed closed hysteresis loops. Above the critical level of repeated stress, effective stress failure occurred; and each cycle of loading produced cumulative increases in deformation.An interesting feature of the test results was that a linear relationship between the magnitude of the applied repeated stress and the increase in pore water pressure was found for stress levels below the critical value.


2019 ◽  
Vol 92 ◽  
pp. 02007
Author(s):  
Ken Vinck ◽  
Tingfa Liu ◽  
Emil Ushev ◽  
Richard J. Jardine

Compressing samples between rigid platens, as in triaxial testing, induce non-uniform specimen stress, strain and pore water distributions. Although well recognised historically, the effects of such platen restraints are often disregarded or overlooked when performing or interpreting monotonic and cyclic experiments. This paper presents an updated appraisal of end conditions based on laboratory experiments run on sand, glacial till, intact and puttified chalk as part of offshore piling research projects. Monotonic and cyclic triaxial tests are reported that incorporated local strain and pore pressure sensors and a range of platen configurations. New insights are reported regarding the small-to-large behaviour and undrained cyclic pore water pressure measurement.


2016 ◽  
Vol 703 ◽  
pp. 345-348
Author(s):  
Zheng Lu ◽  
Zhi Hu ◽  
Hua Wang ◽  
Hai Lin Yao

A series of consolidated-undrained (CU) triaxial compression tests and dynamic triaxial tests on mucky clay material were performed in the present paper, and the dynamic behaviors of mucky clay material for different dynamic stress amplitudes and initial static deviator stresses were studied. It is indicated that both the accumulated strain and the pore water pressure increase rapidly with increasing number of cycles. While after a certain number of cycles, the accumulated strain tends to be stable and there is enough time for the equilibrium of pore water pressure. Results also show that the influences of dynamic stress amplitudes and initial static deviator stresses on the accumulated plastic strain and pore water pressure of the mucky clay material are significant.


Sign in / Sign up

Export Citation Format

Share Document