Barrier Properties of Polypropylene/Poly(M-Xylene Adipamide) and Polypropylene/ Poly(Ethylene-Co-Vinyl Alcohol) Blend Films

2010 ◽  
Vol 26 (4) ◽  
pp. 377-394 ◽  
Author(s):  
İlhan Özen ◽  
Yusuf Ziya Menceloğlu
e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Zahed Ahmadi

AbstractHybrid nanocomposites based on high-density polyethylene (HDPE)/poly (ethylene-co-vinyl alcohol) (EVOH)/clay were prepared and fully characterized. Morphological (WAXS and TEM), calorimetric (DSC), and dynamic mechanical thermal (DMTA) analyses were applied to investigate potential of nanocomposites as barrier against oxygen. Co-existence of ingredients of different nature, i.e. HDPE (general-purpose non-polar component), EVOH (engineering polar component with excellent barrier properties), nanoclay (planar one-dimensional mineral barrier nanofiller), and maleated HDPE (PE-g-MA) as coupling agent, brings about serious intricacies in view of interaction between existing phases. Conceptual/experimental analysis was performed to explore the interdependence between microstructure and oxygen barrierity of HDPE/EVOH/clay nanocomposites through the lens of interaction state in the system. Morphological measurements confirmed formation of an intercalated nanostructure, while investigations on complex viscosity, storage modulus, permeability, thermo-mechanical properties, and nanoclay interlayer galleries were all indicative of dependence of nanocomposites’ properties on molecular interactions. The performance of nanocomposite sheets as oxygen barriers was mechanistically explained.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1054 ◽  
Author(s):  
Xunjun Chen ◽  
Shufang Wu ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

Blend films of feather keratin (FK) and synthetic poly(vinyl alcohol) (PVA) that were compatibilized by tris(hydroxymethyl)aminomethane (Tris) were successfully prepared by a solution-casting method. The scanning electron microscopy (SEM) results showed that a phase separation occurred in the FK/PVA/Tris blended system. Analysis by Fourier transform infrared spectroscopy indicated that the main interactions between the three components were hydrogen bonds. In addition, X-ray diffraction analysis showed that the FK/PVA/Tris blend films were partially crystalline. The barrier properties, mechanical properties, and contact angles of the FK/PVA/Tris films were investigated to determine the effects of the PVA and Tris concentrations. More specifically, upon increasing the PVA content, the elongation at break, the hydrophilicity, and the oxygen barrier properties were enhanced. However, at a constant PVA content, an increase in the Tris content caused the oxygen permeability and the contact angle to decrease, while the tensile strength, elongation at break, and oxygen barrier properties were enhanced. These results indicated that the mechanical properties and gas resistance of the FK/PVA/Tris blend films could be successfully improved using the method described herein, confirming that this route provided a convenient and promising means to prepare FK plastics for practical applications.


2012 ◽  
Vol 116 (23) ◽  
pp. 12599-12612 ◽  
Author(s):  
Nadine Tenn ◽  
Nadège Follain ◽  
Kateryna Fatyeyeva ◽  
Jean-Marc Valleton ◽  
Fabienne Poncin-Epaillard ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 292
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Hussain Alattas ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
Ahmed Yacine Badjah Hadj Ahmed ◽  
...  

A series of poly(ethylene-co-vinyl alcohol)/poly(ε-caprolactone) blends with different compositions were prepared using solvent casting. The miscibility of this pair of polymers was investigated using differential scanning calorimetry (DSC), and proved by a negative Flory interaction parameter value calculated from the Nishi–Wang equation. The miscibility of this blend was also confirmed by scanning electronic microscopy (SEM). The thermal behaviors of the obtained materials were investigated by DSC, thermogravimetric analysis, and direct analysis in real-time–time-of-flight mass spectrometry and the results obtained were very relevant. Furthermore, the crystalline properties of the obtained materials were studied by DSC and X-ray diffraction where the Ozawa approach was adopted to investigate the non-isothermal crystallization kinetics. The results obtained revealed that this approach described the crystallization process well.


Sign in / Sign up

Export Citation Format

Share Document