Thermomechanical and isothermal fatigue behaviour of type 316 stainless steel base metal, weld metal, and joint

2000 ◽  
Vol 5 (3) ◽  
pp. 174-182 ◽  
Author(s):  
E. Yoshihisa ◽  
S. Ganesh Sundara Raman
Author(s):  
Seiji Asada ◽  
Shengde Zhang ◽  
Masahiro Takanashi ◽  
Yuichiro Nomura

Abstract Improved design fatigue curves were developed in the Subcommittee on Design Fatigue Curve in the Atomic Energy Research Committee in the Japan Welding Engineering Society (JWES). Working Group on Design Fatigue Curves (WG DFC) in the JSME has studied the validity and the applicability of the improved design fatigue curves developed in the JWES to incorporate into the JSME Environmental Fatigue Evaluation Method. The authors propose a fatigue analysis method using the design fatigue curves developed in the JWES that are applied revised factors to optimize the environmental fatigue analysis. Also, the Japanese pressurized water reactor (PWR) utility group developed equations of environmental fatigue factors (Fen) for austenitic stainless steel base metal, weld metal and cast stainless steel in PWR environment. The WG DFC has investigated the Fen equations and concluded that the Fen equation of austenitic stainless steel base metal is the most conservative among the three equations and close to NUREG/CR-6909 Rev.1 [24]. The authors propose to use the Fen equation for base metal for austenitic stainless steels for all of the base metal, weld metal and cast stainless steel. In addition, the authors have confirmed that the employment of the proposed Fen equation to the proposed design fatigue curves of austenitic stainless steels accurately predicts the existing environmental fatigue test data of austenitic stainless steels, which were used in the development of the current Fen equation of austenitic stainless steels in PWR environments in the JSME Environmental Fatigue Evaluation Method. Therefore, the proposed Fen equation can be applied to environmental fatigue evaluation for austenitic stainless steels.


2016 ◽  
Vol 848 ◽  
pp. 43-47 ◽  
Author(s):  
Thanaporn Thonondaeng ◽  
Kittichai Fakpan ◽  
Krittee Eidhed

This study involves V-groove butt welding of CP Titanium to 304 stainless steel by the gas tungsten arc welding (GTAW) process without and with buttering layer at the 304 stainless steel base metal. ERCuSn-A and ERNiCu-7 were chosen as a filler metals. Investigations including visual testing (VT), microhardness testing and metallurgical analysis were carried out by means of variable welding parameters. The experimental results showed that using the ERCuSn-A filler metal without and with buttering layer, any surface defect was not observed in the dissimilar metals welded specimen but an underbead crack was found at weld metal adjacent to the Ti/weld metal interface. Using the ERNiCu-7 filler metal without buttering layer, linear porosity was observed at weldment. However, using ERNiCu-7 filler metal with buttering layer, defect-free welded specimen could be achieved. The results of EDS analysis indicated that at Ti/weld metal interface, Ti diffused from the Ti base metal to the weld metal. At 304 stainless steel/weld metal interface, Fe, Ni and Cr diffused from the 304 stainless steel base metal to the weld metal.


Sign in / Sign up

Export Citation Format

Share Document