High resolution transmission electron microscopy and three-dimensional atom probe microscopy as complementary techniques for the high spatial resolution analysis of GaN based quantum well systems

2008 ◽  
Vol 24 (6) ◽  
pp. 675-681 ◽  
Author(s):  
R. A. Oliver ◽  
M. J. Galtrey ◽  
C. J. Humphreys
2009 ◽  
Vol 1184 ◽  
Author(s):  
Luciano Andrey Montoro ◽  
Marina Leite ◽  
Daniel Biggemann ◽  
Fellipe Grillo Peternella ◽  
Kees Joost Batenburg ◽  
...  

AbstractThe knowledge of composition and strain with high spatial resolution is highly important for the understanding of the chemical and electronic properties of alloyed nanostructures. Several applications require a precise knowledge of both composition and strain, which can only be extracted by self-consistent methodologies. Here, we demonstrate the use of a quantitative high resolution transmission electron microscopy (QHRTEM) technique to obtain two-dimensional (2D) projected chemical maps of epitaxially grown Ge-Si:Si(001) islands, with high spatial resolution, at different crystallographic orientations. By a combination of these data with an iterative simulation, it was possible infer the three-dimensional (3D) chemical arrangement on the strained Ge-Si:Si(001) islands, showing a four-fold chemical distribution which follows the nanocrystal shape/symmetry. This methodology can be applied for a large variety of strained crystalline systems, such as nanowires, epitaxial islands, quantum dots and wells, and partially relaxed heterostructures.


1981 ◽  
Vol 8 ◽  
Author(s):  
John B. Vander Sande

ABSTRACTThe techniques of scanning transmission electron microscopy and field iron microscopy/atom probe are briefly described. The advantages of these techniques for high spatial resolution compositional analysis are discussed and examples cited.


Author(s):  
V. Poletto ◽  
V. Galimberti ◽  
G. Guerra ◽  
V. Rosti ◽  
F. Moccia ◽  
...  

We propose a tool for a rapid high-resolution detection of calcium ions which can be used in parallel with other techniques. We have applied a new approach by  photo-oxidation of diaminobenzidine in presence of the emission of an excited fluorochrome specific for calcium detection. This method combines the selectivity of available fluorophores to the high spatial resolution offered by transmission electron microscopy to detect even fluorescing molecules even when present in low amounts in membrane-bounded organelles. We show in this paper that Mag-Fura 2 photoconversion via diaminobenzidine oxidation is an efficient way for localizing Ca2+ ions at EM level, is easily carried out and reproducible, and can be obtained on a good amount of cells, since the exposition in our conditions is not limited to the direct irradiation of the sample via an objective but obtained with a germicide lamp. The end product is sufficiently electron dense to be detected clearly when present in sufficient amount within a membrane boundary.


2008 ◽  
Vol 1144 ◽  
Author(s):  
Han Sung Kim ◽  
Yoon Myung ◽  
Chang Hyun Kim ◽  
Seung Yong Bae ◽  
Jae-Pyoung Ahn ◽  
...  

ABSTRACTElectron tomography and high-resolution transmission electron microscopy were used to characterize the unique three-dimensional structures of helical or zigzagged GaN, ZnGa2O4 and Zn2SnO4 nanowires. The helical GaN nanowires adopt a helical structure that consists of six equivalent <0-111> growth directions with the axial [0001] direction. The ZnGa2O4 nanosprings have four equivalent <011> growth directions with the [001] axial direction. The zigzagged Zn2SnO4 nanowires consisted of linked rhombohedrons structure having the side edges matched to the <011> direction, and the [111] axial direction.


2005 ◽  
Vol 11 (5) ◽  
pp. 378-400 ◽  
Author(s):  
Christian Kübel ◽  
Andreas Voigt ◽  
Remco Schoenmakers ◽  
Max Otten ◽  
David Su ◽  
...  

Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1–2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.


Sign in / Sign up

Export Citation Format

Share Document