Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus

2006 ◽  
Vol 105 (4) ◽  
pp. 201-208 ◽  
Author(s):  
J. I. Escalante García ◽  
K. Campos-Venegas ◽  
A. Gorokhovsky ◽  
A. Fernández
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Ilda Tole ◽  
Magdalena Rajczakowska ◽  
Abeer Humad ◽  
Ankit Kothari ◽  
Andrzej Cwirzen

An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.


Author(s):  
Jan Pieter Vermeulen ◽  
Natalie Lloyd

This research examines an alternative binder, Alkali Activated Cement (AAC), examining the fresh and hardened mechanical properties of twelve AAC mortar mixes with varying mixture proportions of blast-furnace slag, fly ash, sodium silicate (the alkali activator), and additional water. In addition to the Slag-Fly Ash mortars, nine mixtures with blast-furnace slag, silica fume, aluminum hydrate, sodium silicate, and water were tested. For all mortars, the compressive strength was exponentially related to the water/activator-solids ratio. Mortar strengths at 28 days ranged from 5 MPa to 20 MPa. Increasing the slag to binder-solids ratio from 0.1 to 0.2 increased the strength with water to binder ratios from 0.2 to 0.4. However, rapid or almost instantaneous setting times were observed for a slag to binder-solids ratio of 0.2. The research concluded that using a carefully chosen mix design can prevent quick setting while still achieving high strength and acceptable workability. It is suggested the CaO to binder-solids ratio remain below 0.07; a sodium silicate to binder solids ratio of around 0.25 is optimal; a water to binder-solids ratio should be around 0.3. When replacing fly ash, a Si/Al ratio above 2 is recommended. This research concluded that other solids (Silica Fume and Aluminum Hydrate) could replace Slag and/or Fly Ash if the overall chemical balance of the system is maintained.


2016 ◽  
Vol 1813 ◽  
Author(s):  
O. F. Cortés-Salmerón ◽  
M. L. García-Chávez ◽  
T. A. García-Mejía

ABSTRACTThe present work is a study on alkali activation of Mexican blast furnace slag, using sodium silicate. The aim is to produce an optimal specimen, homogeneous without carbonation, and with small fraction of crystalline phases, similar to CSH, which provide mechanical properties suitable to use in the construction industry. The samples were prepared using sodium silicate activator solutions with modulus (SiO2/Na2O) of 1.25, 1.5, and 1.75. The weight percentage of Na2O in the activator solutions was added at 4, 6 and 8% relative to the slag weight. The prepared samples were stored in sealed molds, at room temperature (20°C), during 7 days. The X-ray diffraction has revealed the presence of an amorphous phase, semi crystalline clinotobermorite phase and signals of calcium carbonate for the samples of 4 and 6 % of Na2O; in contrast with the 8% Na2O, where the latter signals almost disappeared. The specimen selected as optimal was prepared with an activator concentration of 8% of Na2O /Slag, and SiO2/Na2O of 1.25. A specimen under these optimal conditions was prepared with accelerated curing (40°C, humidity, 48 hours), and a compressive strength test was attained, with an average value of 52 MPa at 3 days.


2015 ◽  
Vol 754-755 ◽  
pp. 359-363
Author(s):  
M. Azreen ◽  
M.W. Hussin

Ordinary Portland Cement (OPC) concrete is one of the most widely used construction materials globally, though its production in construction has negative environmental impact. About 0.9 ton of CO2is emitted for every one (1) ton of cement produced. In order to reduce the amount of CO2emission from cement industry, the utilization of supplementary cementitious materials such as pulverized fuel ash (PFA), blast-furnace slag and natural pozzolans is common and effective. Geopolymer is an inorganic binder material and can be produced by a geopolymeric reaction of alkali activating solution with silica and alumina rich source materials such as PFA and blast-furnace slag. In this study, the durability of concrete such as the resistance to sulfuric acid and sulfate solutions due to the effect of blended as of PFA and palm oil fuel ash (POFA), along with alkaline activators were investigated. Consequently, the optimum mix design of the blended ash geopolymer (BAG) concrete and OPC concrete specimens were prepared with water to cement ratio of 0.5 by mass as control. The micro structural analysis by X-ray diffraction (XRD) was done. BAG concrete showed better performance in 2% sulfuric acid and 5% sulfate solutions. From micro structural analysis, it was evident that BAG binder gel (N-A-SH) produced more durable material compared with C-S-H binder gel of OPC. The BAG concrete is strongly recommended to be used as an alternative to OPC concrete in addition to its environmental friendliness. Abundant PFA and POFA can be efficiently utilized to produce a high performance concrete.


Sign in / Sign up

Export Citation Format

Share Document