Shear Bond Strength of Ceramic Brackets with Two Bonding Adhesives

1993 ◽  
Vol 20 (3) ◽  
pp. 225-229 ◽  
Author(s):  
W. H. Sam ◽  
S. Y. Chao ◽  
K. H. Chung

The shear bond strength of two adhesives (Concise® and Dyna-Plus® bonding system) with one type of ceramic bracket was determined in this study. There were statistically significant differences between the bond strengths, with Concisereg; recording higher levels than Dyna-Plus®. Failure sites of Dyna-Plus® were revealed at the enamel/resin, resin/resin, and resin/bracket interfaces; that of the Concise® was mainly at the resin/bracket interface.

1992 ◽  
Vol 19 (3) ◽  
pp. 183-189 ◽  
Author(s):  
Carl-Magnus Forsberg ◽  
Catharina Hagberg

The study was undertaken to measure and compare the shear bond strengths of a ceramic bracket with chemical retention, a ceramic bracket with a new type of textured base providing mechanical retention, and a metal bracket with foil-mesh base. The tests were performed on 51 extracted human premolars which were randomly divided into three equally large groups (n = 17)—one group for each type of bracket. After debonding, the site of failure was noted and the enamel surface inspected with scanning electron microscopy. The ceramic bracket with chemical retention exhibited significantly higher bond strength than the corresponding bracket with textured base. In comparison with the metal bracket significantly higher bond strengths were recorded for both types of ceramic brackets. The ceramic bracket with mechanical retention and the metal bracket were comparable as regards the site of bond failure. In some cases the chemical bond provided very high values of bond strength. Enamel failure were recorded in three teeth which had been bonded with this type of ceramic bracket.


2015 ◽  
Vol 58 (2) ◽  
pp. 43-48 ◽  
Author(s):  
Waleed Bakhadher ◽  
Hassan Halawany ◽  
Nabeel Talic ◽  
Nimmi Abraham ◽  
Vimal Jacob

The adhesive material used to bond orthodontic brackets to teeth should neither fail during the treatment period, resulting in treatment delays, untoward expenses or patient inconvenience nor should it damage the enamel on debonding at the end of the treatment. Although the effectiveness of a bonding system and any unfavorable effects on the enamel may be studied by conductingin-vivostudies, it is nearly impossible to independently analyze different variables that influence a specific bonding system in the oral environment.In-vitrostudies, on the other hand, may utilize more standardized protocols for testing different bonding systems and materials available. Thus, the present review focused attention onin-vitrostudies and made an attempt to discuss material-related, teeth-related (fluorotic vs non-fluorotic teeth) and other miscellaneous factors that influences the shear bond strength of orthodontic brackets. Within the limitations of this review, using conventional acid-etch technique, ceramic brackets and bonding to non-fluorotic teeth was reported to have a positive influence on the shear bond strength of orthodontic brackets, but higher shear bond strength found on using ceramic brackets can be dangerous for the enamel.


2009 ◽  
Vol 79 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Ding Xiaojun ◽  
Lu Jing ◽  
Guo Xuehua ◽  
Ruan Hong ◽  
Yu Youcheng ◽  
...  

Abstract Objective: To evaluate the effect of casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) paste on shear bond strength and debonding failure modes of orthodontic brackets. Materials and Methods: Freshly extracted premolars were randomly divided into four groups (n =18) as follows: in groups 1 and 3, the enamel was treated with a solution of CPP-ACP dissolved in artificial saliva; groups 2 and 4 served as controls, and the enamel was treated with artificial saliva. After conventional acid etching, in groups 1 and 2, brackets were bonded using a light-cured bonding system (Blugloo); while in groups 3 and 4, brackets were bonded using a conventional bonding system (Unite Bonding Adhesive). Bonded specimens were subjected to thermal cycling for 1000 cycles before debonding procedures. After debonding, teeth and brackets were examined under a stereomicroscope at 10× magnification to determine whether any adhesive remained, in accordance with the adhesive remnant index. The acid-etched enamel surfaces were also observed using scanning electron microscopy after treatment with and without CPP-ACP paste. Results: The shear bond strengths of group 1 were significantly higher than those seen in group 2 (P < .01). There was no significant difference in the shear bond strengths of groups 3 and 4 (P > .05). Scanning electron microscopic observation showed that the pretreated enamel surface was rougher than that of the control surface after acid etching. Conclusion: The use of CPP-ACP can be considered as an alternative prophylactic application in orthodontic practice since it did not compromise bracket bond strength.


2015 ◽  
Vol 26 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Monique Kruger Guarita ◽  
Alexa Helena Köhler Moresca ◽  
Estela Maris Losso ◽  
Alexandre Moro ◽  
Ricardo Cesar Moresca ◽  
...  

The aim of this study was to evaluate the shear bond strength of rebonded ceramic brackets after subjecting the bracket base to different treatments. Seventy-five premolars were selected and randomly distributed into five groups (n=15), according to the type of the bracket surface treatment: I, no treatment, first bonding (control); II, sandblasting with aluminum oxide; III, sandblasting + silane; IV, silica coating + silane; and V, silicatization performed in a laboratory (Rocatec system). The brackets were fixed on an enamel surface with Transbond XT resin without acid etching. The brackets were then removed and their bases were subjected to different treatments. Thereafter, the brackets were fixed again to the enamel surface and the specimens were subjected to shear bond strength (SBS) test. The adhesive remnant index (ARI) was then evaluated for each specimen. Data were subjected to ANOVA and Tukey's tests (α=0.05). A statistically significant difference was observed only between Rocatec and the other groups; the Rocatec group showed the lowest SBS values. The highest SBS values were observed for group 1, without any significant difference from the values for groups II, III and IV. Most groups had a higher percentage of failures at the enamel-resin interface (score 1). It was concluded that the surface treatments of rebonded ceramic brackets were effective, with SBS values similar to that of the control group, except Rocatec group.


2019 ◽  
Vol 13 (02) ◽  
pp. 150-155
Author(s):  
Sibel Cetik ◽  
Thaï Hoang Ha ◽  
Léa Sitri ◽  
Hadrien Duterme ◽  
Viet Pham ◽  
...  

Abstract Objectives Due to the high demand for all-ceramic restorations, monolithic zirconia restorations are nowadays frequently used. With the demand for adult orthodontic treatments, orthodontists need to be mindful of the quality of their brackets bonding to this type of material, as it requires special conditioning. This study aimed to compare different surface treatments of zirconia when bonding metal or ceramic orthodontic brackets. The objectives are to compare the shear bond strength; the amount of adhesive remaining on the surface of the material; the incidence of adhesive, cohesive, and mixed failures; and the occurrence of zirconia fractures. Materials and Methods Forty monolithic blocks of zirconia of a diameter of 10 mm and a length of 10 mm were prepared and randomly divided into two groups (n = 20): metallic or ceramic brackets. Each group was subsequently divided into two subgroups (n = 10) depending on the surface preparation (laser treatment or airborne particle abrasion): SMB (airborne particle abrasion, metal bracket), SCB (airborne particle abrasion, ceramic bracket), LMB (laser; metal bracket), and LCB (laser, ceramic bracket). The samples were tested for shear bond strength using a universal testing machine. The adhesive remnant index and the occurrence of zirconia fractures and different types of failures were assessed by optical and electron microscopy. Statistical Analysis Results were analyzed using analysis of variance. Results The differences were significant between the metallic (SMB, LMB) and ceramic (SCB, LCB) bracket groups with regard to shear bond strength, with respectively 23.29 ± 5.34 MPa, 21.59 ± 4.03 MPa, 20.06 ± 4.05 MPa, and 17.55 ± 3.88 MPa. In terms of surface treatment, no statistical differences were found between the different groups. Conclusion Metal brackets have a greater bond strength than ceramic brackets when cemented to zirconia. The surface treatment of zirconia surface has no influence on the shear bond strength.


2016 ◽  
Vol 49 (4) ◽  
pp. 189
Author(s):  
Pinandi Sri Pudyani ◽  
Setiarini Widiarsanti

Background: Fixed orthodontic appliances with ceramic brackets are used frequently to fulfill the aesthetic demand of patient through orthodontic treatment. Ceramic brackets have some weaknesses such as bond strength and enamel surface damage. In high bond strength the risk of damage in enamel surfaces increases after debonding. Purpose: This study aimed to determine the effect of silane on base of bracket and adhesive to shear bond strength and enamel structure of ceramic bracket. Method: Sixteen extracted upper premolars were randomly divided into four groups based on silane or no silane on the bracket base and on the adhesive surface. Design of the base on ceramic bracket in this research was microcrystalline to manage the influence of mechanical interlocking. Samples were tested in shear mode on a universal testing machine after attachment. Following it, adhesive remnant index (ARI) scores were used to assess bond failure site. Statistical analysis was performed using a two-way Anova and the Mann-Whitney test. A scanning electron microscope (SEM) with a magnification of 2000x was used to observe enamel structure after debonding. Result: Shear bond strength was increased between group without silane and group with silane on the base of bracket (p<0,05). There was no significance different between group without silane and group with silane on adhesive (p<0,05). Conclusion: Application of silane on base of bracket increases shear bond strength, however, application of silane on adhesive site does not increase shear bond strength of ceramic bracket. Most bonding failure occurred at the enamel adhesive interface and damage occurred on enamel structure in group contains silane of ceramic bracket.


2004 ◽  
Vol 5 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Nasrien Z. Ateyah ◽  
Ahmed A. Elhejazi

Abstract The aim of this investigation was to compare the microleakage of composite resin (Z-100) and shear bond strength to bovine dentin using different types of adhesive systems (Scotch Bond Multi-Purpose, All-Bond 2, One-Step, and Perma Quick) to compare and correlate microleakage to shear bond strength. For the microleakage aspect of the study, 20 class V were prepared (bovine incisors) with 90-degree cavosurface margins and were located at the cemento-enamel junction using a template. Each dentin bonding system was applied to five cavities following the manufacturer's instructions and restored with Z-100 composite resin. After 24 hours of storage in distilled water at 37°C, the teeth were immersed in 2% basic fuchsin dye. All teeth were sectioned in a mesiodistal direction using a diamond saw, and each section was then inspected under a stereomacroscope. For the shear bond strength aspect of the study, 20 bovine incisors were centrally horizontally mounted in Teflon mold with cold cure acrylic resin. Flat labial dentin surfaces were prepared using different grit silicon carbide abrasive wheels. Five specimens were used for each of the bonding agent systems. Each specimen was bonded with restorative composite resin (Z-100) and applied to the treated dentinal surface through a split Teflon mold. All specimens were stored in distilled water at 37°C for 24 hours. The bonds were stressed using shear forces at a crosshead speed of 0.5mm/min using an Instron Universal testing machine. Findings indicate none of the systems tested in this study were free from microleakage. Scotch bond multipurpose achieved the best seal, with One-Step being second best, while All-Bond 2 and Perma Quick had the poorest seal. However, there were significant differences among the shear bond strengths of the four bonding systems tested. Scotch Bond Multi-Purpose has a higher bond strength to composite resin when compared to the other dentin adhesives. The study also concluded there is no association between microleakage and shear bond strength. Citation Ateyah AZ, Elhejazi AA. Shear Bond Strengths and Microleakage of Four Types of Dentin Adhesive Materials. J Contemp Dent Pract 2004 February;(5)1:063-073.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1640 ◽  
Author(s):  
Ga-Youn Ju ◽  
Soram Oh ◽  
Bum-Soon Lim ◽  
Hyun-Seung Lee ◽  
Shin Hye Chung

The aim of this study was to evaluate the long term stability of shear bond strength (SBS) when 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) containing universal adhesive was used in the ceramic bracket bonding on dental zirconia. Twenty human maxillary incisors were collected. The ceramic bracket was bonded on the buccal enamel surface after the acid-etching and orthodontic primer application (Group CON). Sixty zirconia specimens were sintered, sandblasted and divided into three experimental groups; group CP—ceramic primer followed by an orthodontic primer; group U—universal adhesive; group CU—ceramic primer followed by a universal adhesive. For each specimen, the bracket was bonded onto the treated surface with composite resin (Transbond XT, 3M ESPE). The SBS tested before (CON0, CP0, U0, CU0) and after the artificial aging (CON1, CP1, U1, CU1). The data were statistically analyzed with the Kruskal–Wallis test at a significance level of 0.05. The mean SBS of CON0, CP0, U0 and CU0 were within the clinically acceptable range without significant differences. After the aging process, SBS decreased in all groups. Among the aged groups, CP1 showed the highest SBS. Based on the results, when bonding ceramic brackets to a dental zirconia surface, we can conclude that ceramic primer used with an orthodontic primer, rather than using a universal adhesive, is recommended.


2014 ◽  
Vol 85 (4) ◽  
pp. 645-650 ◽  
Author(s):  
Laura Mews ◽  
Matthias Kern ◽  
Robert Ciesielski ◽  
Helge Fischer-Brandies ◽  
Bernd Koos

ABSTRACT Objective:  To examine differences in the shear bond strength of orthodontic brackets on differently mineralized enamel surfaces after applying a caries infiltrant or conventional adhesive. Materials and Methods:  A total of 320 bovine incisors were assigned to eight pretreated groups, and the shear force required for debonding was recorded. Residual adhesive was evaluated by light microscopy using the adhesive remnant index. Statistical analysis included Kolmogorov-Smirnov, analysis of variance (ANOVA), and Scheffé tests. Results:  The highest bond strength (18.8 ± 4.4 MPa) was obtained after use of the caries infiltrant. More residual adhesive and fewer enamel defects were observed on infiltrated enamel surfaces. Brackets on demineralized enamel produced multiple enamel defects. Conclusions:  Acceptable bond strengths were obtained with all material combinations. A caries-infiltrant applied before bracket fixation has a protective effect, especially on demineralized enamel.


Sign in / Sign up

Export Citation Format

Share Document