High strain rate superplastic flow stress and post-deformation mechanical properties of mechanically alloyed 2024 aluminium alloy reinforced with SiC particles

1997 ◽  
Vol 13 (12) ◽  
pp. 1039-1044 ◽  
Author(s):  
K. Matsuki ◽  
H. Kawakami ◽  
M. Tokizawa ◽  
S. Murakami
2015 ◽  
Vol 11 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Ravindranadh Bobbili ◽  
B. Ramakrishna ◽  
V. Madhu ◽  
A.K. Gogia

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1628
Author(s):  
Amos Muiruri ◽  
Maina Maringa ◽  
Willie du Preez

To increase the acceptance of direct metal laser sintered Ti6Al4V(Extra Low Interstitial—ELI) in industry, analytical models that can quantitatively describe the interrelationships between the microstructural features, field variables, such as temperature and strain rate, and the mechanical properties are necessary. In the present study, a physical model that articulates the critical microstructural features of grain sizes and dislocation densities for use in predicting the mechanical properties of additively manufactured Ti6Al4V(ELI) was developed. The flow stress curves of different microstructures of the alloy were used to obtain and refine the parameters of the physical model. The average grain size of a microstructure was shown to influence the athermal part of yield stress, while the initial dislocation density in a microstructure was seen to affect the shape of the flow stress curve. The viscous drag effect was also shown to play a critical role in explaining the upturn of flow stress at high strain rates. The microstructure-based constitutive model developed and validated in this article using experimental data showed good capacity to predict the high strain rate flow properties of additively manufactured Ti6Al4V(ELI) alloy.


2015 ◽  
Vol 12 (9) ◽  
pp. 2891-2896
Author(s):  
Xinying Zhao ◽  
Boliang Wang ◽  
Xi Li ◽  
Yuanhua Xie ◽  
Xuefeng Du

2011 ◽  
Vol 88-89 ◽  
pp. 674-678
Author(s):  
Shuang Zan Zhao ◽  
Xing Wang Cheng ◽  
Fu Chi Wang

Some results of an experimental study on high strain rate deformation of TC21 alloy are discussed in this paper. Cylindrical specimens of the TC21 alloys both in binary morphology and solution and aging morphology were subjected to high strain rate deformation by direct impact using a Split Hopkinson Pressure Bar. The deformation process is dominated by both thermal softening effect and strain hardening effect under high strain rate loading. Thus the flow stress doesn’t increase with strain rate at the strain hardening stage, while the increase is obvious under qusi-static compression. Under high strain rate, the dynamic flow stress is higher than that under quasi-static and dynamic flow stress increase with the increase of the strain rate, which indicates the strain rate hardening effect is great in TC21 alloy. The microstructure affects the dynamic mechanical properties of TC21 titanium alloy obviously. Under high strain rate, the solution and aging morphology has higher dynamic flow stress while the binary morphology has better plasticity and less prone to be instability under high strain rate condition. Shear bands were found both in the solution and aging morphology and the binary morphology.


Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Electronics in automotive underhood and downhole drilling applications may be subjected to sustained operation at high temperature in addition to high strain-rate loads. SAC solders used for second level interconnects have been shown to experience degradation in high strain-rate mechanical properties under sustained exposure to high temperatures. Industry search for solutions for resisting the high-temperature degradation of SAC solders has focused on the addition of dopants to the alloy. In this study, a doped SAC solder called SAC-Q solder have been studied. The high strain rate mechanical properties of SAC-Q solder have been studied under elevated temperatures up to 200°C. Samples with thermal aging at 50°C for up to 6-months have been used for measurements in uniaxial tensile tests. Measurements for SAC-Q have been compared to SAC105 and SAC305 for identical test conditions and sample geometry. Data from the SAC-Q measurements has been fit to the Anand Viscoplasticity model. In order to assess the predictive power of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test and the model predictions compared with experimental data. Model predictions show good correlation with experimental measurements. The presented approach extends the Anand Model to include thermal aging effects.


Sign in / Sign up

Export Citation Format

Share Document