A comparison of radiation effects in crystalline ABO4-type phosphates and silicates

2000 ◽  
Vol 64 (2) ◽  
pp. 185-194 ◽  
Author(s):  
A. Meldrum ◽  
L. A. Boatner ◽  
R. C. Ewing

AbstractThe effects of ion irradiation in the ABO4-type compounds were compared by performing experiments on four materials that include the most common crystal structures (monazite vs. zircon) and chemical compositions (phosphates vs. silicates) for these phases. Pure synthetic single crystals of ZrSiO4, monoclinic ThSiO4, LaPO4 and ScPO4 were irradiated using 800 keV Kr+ ions. Radiation damage accumulation was monitored as a function of temperature in situ in a transmission electron microscope. The activation energies for recrystallization during irradiation were calculated to be 3.1–3.3 eV for the orthosilicates but only 1.0–1.5 eV for the isostructural orthophosphates. For the ion-beam-irradiated samples, the critical temperature, above which the recrystallization processes are faster than damage accumulation and amorphization cannot be induced, is >700°C for ZrSiO4 but it is only 35°C for LaPO4. At temperatures above 600°C, zircon decomposed during irradiation into its component oxides (i.e. crystalline ZrO2 plus amorphous SiO2). The data are evaluated with respect to the proposed use of the orthophosphates and orthosilicates as host materials for the stabilization and disposal of high-level nuclear waste. The results show that zircon with 10 wt.% Pu would have to be maintained at temperatures in excess of 300°C in order to prevent it from becoming completely amorphous. In contrast, a similar analysis for the orthophosphates implies that monazite-based waste forms would not become amorphous or undergo a phase decomposition.

2005 ◽  
Vol 20 (7) ◽  
pp. 1654-1683 ◽  
Author(s):  
R.C. Birtcher ◽  
M.A. Kirk ◽  
K. Furuya ◽  
G.R. Lumpkin ◽  
M-O. Ruault

In situ observation is of great value in the study of radiation damage utilizing electron or ion irradiation. We summarize the facilities and give examples of work found around the world. In situ observations of irradiation behavior have fallen into two broad classes. One class consists of long-term irradiation, with observations of microstructural evolution as a function of the radiation dose in which the advantage of in situ observation has been the maintenance of specimen position, orientation, and temperature. A second class has involved the recording of individual damage events in situations in which subsequent evolution would render the correct interpretation of ex situ observations impossible. In this review, examples of the first class of observation include ion-beam amorphization, damage accumulation, plastic flow, implant precipitation, precipitate evolution under irradiation, and damage recovery by thermal annealing. Examples of the second class of observation include single isolated ion impacts that produce defects in the form of dislocation loops, amorphous zones, or surface craters, and single ion impact-sputtering events. Experiments in both classes of observations attempt to reveal the kinetics underlying damage production, accumulation, and evolution.


1993 ◽  
Vol 316 ◽  
Author(s):  
S. Coffa ◽  
A. Battaglia ◽  
F. Priolo

ABSTRACTThe mechanisms of defect accumulation and dynamic annealing in ion-implanted crystalline and amorphous Si are elucidated by performing conductivity and Raman spec-trascopy measurements in-situ during ion irradiation. In amorphous Si the entire gamut of defect structures has been characterized by analyzing the annealing kinetics from 77 K to ~ 800 K both during and after irradiation. Moreover the modifications in the electronic properties of crystalline Si produced by ion-irradiation have been investigated. The use of in-situ techniques in combination with transmission electron microscopy and deep-level transient spectroscopy allowed us to demonstrate the correlation between structural and electrical defects produced by ion-irradiation in Si.


1991 ◽  
Vol 235 ◽  
Author(s):  
R. C. Birtcher ◽  
L. M. Wang

ABSTRACTChanges induced by 1.5 MeV Kr ion irradiation of both U3Si and U3Si2 have been followed by in situ transmission electron microcopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion-beam amorphization, both compounds disorder, with the Martensite twin structure in U3Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material.


1995 ◽  
Vol 10 (4) ◽  
pp. 981-985 ◽  
Author(s):  
N. Bordes ◽  
L.M. Wang ◽  
R.C. Ewing ◽  
K.E. Sickafus

Ion-irradiation induces amorphization in many intermetallics and ceramics, but spinel (MgAl2O4) is considered a “radiation resistant” ceramic. Spinel was irradiated with 1.5 MeV Kr+ at 20 K and observed in situ by transmission electron microscopy (TEM). The spinel remained crystalline to a high dose of 1 × 1016 ions/cm2, without any evidence of amorphization. Another spinel was preimplanted with Ne (400 keV and 50 keV). The microstructure revealed a still crystalline material with 8 nm interstitial loops. After irradiation with 1.5 MeV Kr+ (20 K), amorphization, a result of cation disordering, initiated at a dose of 1.7 × 1015 ions/cm2. At a dose of 1 × 1016 ions/cm2, the spinel was partially amorphous and the remaining crystalline domains disordered. These results show that spinel can be disordered and that amorphization can be triggered by the introduction of stable defects, followed by ion irradiation at low temperature.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. X. Wang ◽  
L. M. Wang ◽  
R. C. Ewing

AbstractThe ion beam-induced crystalline-to-amorphous transition was studied for crystalline phases in the MgO-A12O3-SiO 2 system. Samples were irradiated with 1.5 MeV Xe+ at temperatures from 15 to 1023 K, and the dose required for amorphization was determined by in situ transmission electron microscopy. Based on a cascade quenching model, we propose that irradiation-induced amorphization is closely related to glass formation. The rate of crystallization from a melt is the controlling factor in determining the susceptibility to amorphization and glass formation. From the analysis of cascade quenching evolution, we have derived a simple relation between amorphization dose and temperature. A quantitative parameter, S0, that describes the susceptibility to amorphization is derived that considers the crystalline structure, field strength, and phase transition temperature.


1991 ◽  
Vol 235 ◽  
Author(s):  
L. M. Wang ◽  
R. C. Ewing

ABSTRACTEffects of ion beam irradiation of five members of the (Mg, Fe)2SiO4 olivine series, from synthetic pure fayalite (Fe2SiO4) to naturally occurring (Mg0.88Fe0.12)2SiO4, have been studied by in situ transmission electron microscopy (TEM). Under 1.5 MeV Kr+ ion room temperature irradiations, all of the samples have been amorphized. The critical amorphization dose or the total collision energy loss required for amorphization increased rapidly with the increasing Mg:Fe ratio which coincides with an increasing melting temperature (bond strength) and an increasing average bond ionicity. A 400 keV He+ ion irradiation of (Mg0.88Fe0.12)2-SiO4, which mainly results in ionization energy loss in the sample, did not cause amorphization even at a much higher dose rate and a much higher final dose. This indicates nuclear interactions (collisions) are primarily responsible for ion beam induced amorphization. Also, high resolution electron microscopy (HREM) images of the defect structure at a low ion dose have been obtained and compared with the displacement cascade structure generated by computer modelling.


2005 ◽  
Vol 20 (7) ◽  
pp. 1758-1768 ◽  
Author(s):  
M-O. Ruault ◽  
F. Fortuna ◽  
H. Bernas ◽  
J. Chaumont ◽  
O. Kaïtasov ◽  
...  

Crucial features of materials evolution due to ion beam irradiation are often revealed only through studies of process dynamics. We review some significant examples of such experiments performed over the last 25 years with the Orsay in situ facility: a transmission electron microscope setup (with temperature stages operating between 4 and 1000 K) on a medium energy (3–570 keV) ion beam line. New results on nanocavity evolution and metal silicide nanoprecipitates in Si are presented briefly.We show that CoSi2 nanoprecipitate growth is mainly due to the constant Co atom contribution from the ion beam, and CoSi2 platelet growth is the result of a three-dimensional to two-dimensional growth mode transition.


1991 ◽  
Vol 235 ◽  
Author(s):  
Charles W. Allen

ABSTRACTMotivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; (1) the development of TEM specimen holders in which specimen temperature can be controlled in the range 10–2200 K and (2) the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects.


2012 ◽  
Vol 1383 ◽  
Author(s):  
J.A. Hinks ◽  
A.N. Jones ◽  
S.E. Donnelly

ABSTRACTGraphite is used as a moderator and structural component in the United Kingdom’s fleet of Advanced Gas-Cooled Reactors (AGRs) and features in two Generation IV reactor concepts: the Very High Temperature Reactor (VHTR) and the Molten Salt Reactor (MSR). Under the temperature and neutron irradiation conditions of an AGR, nuclear-grade graphite demonstrates significant changes to it mechanical, thermal and electrical properties. These changes include considerable dimensional change with expansion in the c-direction and contraction in the a/b-directions. As the United Kingdom’s AGRs approach their scheduled decommissioning dates, it is essential that this behaviour be understood in order to determine under what reactor conditions their operating lifetimes can be safely extended.Two models have been proposed for the dimensional change in graphite due to displacing radiation: the “Standard Model” and “Ruck and Tuck”. The Standard Model draws on a conventional model of Frenkel pair production, point defect migration and agglomeration but fails to explain several key experimental observations. The Ruck and Tuck model has been proposed by M.I. Heggie et al. and is based upon the movement of basal dislocation to create folds in the “graphene” sheets and seeks not only to account for the dimension change but also the other phenomena not explained by the Standard Model.In order to test the validity of these models, work is underway to gather experimental evidence of the microstructural evolution of graphite under displacing radiation. One of the primary techniques for this is transmission electron microscopy with in situ ion irradiation. This paper presents the results of electron irradiation at a range of energies (performed in order to separate the effects of the electron and ion beams) and of combined electron and ion beam irradiation.


Sign in / Sign up

Export Citation Format

Share Document