Kinetics of Alumina Removal from a Calcined Kaolin with Nitric, Sulphuric and Hydrochloric Acids

Clay Minerals ◽  
1970 ◽  
Vol 8 (3) ◽  
pp. 337-345 ◽  
Author(s):  
S. F. Hulbert ◽  
D. E. Huff

AbstractAn investigation of the acid-leaching of a calcined kaolin was made to compare the reaction kinetics of hydrochloric, nitric, and sulphuric acids. The acid concentrations used were 5·9 and 8·6 normal. Reaction temperatures used were 95°, 80° and 60° C.Particular attention was given to finding a reaction equation which would mathematically represent the kinetic data. A nucleation rate equation of the general form, was found to represent these data. Values of m varied from 1·10 to 1·55 depending on the experimental conditions.Under the conditions employed the rate of alumina leaching is fastest with hydrochloric acid, slower with sulphuric acid, and slowest with nitric acid. The rate controlling steps are proposed from the experimental evidence.

ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26710-26719
Author(s):  
Qiyuan Zheng ◽  
Yanhui Xu ◽  
Lingxiao Cui ◽  
Shengfeng Ma ◽  
Weihua Guan

1955 ◽  
Vol 38 (5) ◽  
pp. 581-598 ◽  
Author(s):  
Margaret R. McDonald

The proteolytic activity of dilute solutions of clystalline trypsin is destroyed by x-rays, the amount of inactivation being an exponential function of the radiation dose. The reaction yield increases steadily with increasing concentration of trypsin, varying, as the concentration of enzyme is increased from 1 to 300 µM, from 0.068 to 0.958 micromole of trypsin per liter inactivated per 1000 r with 0.005 N hydrochloric acid as the solvent, from 0.273 to 0.866 with 0.005 N sulfuric acid as the solvent, and from 0.343 to 0.844 with 0.005 N nitric acid as the solvent. When the reaction yields are plotted as a function of the initial concentration of trypsin, they fall on a curve given by the expression Y α XK, in which Y is the reaction yield, X is the concentration of trypsin, and K is a constant equal to 0.46, 0.20, and 0.16, respectively, with 0.005 N hydrochloric, sulfuric, and nitric acids as solvents. The differences between the reaction yields found with chloride and sulfate ions in I to 10 µM trypsin solutions are significant only in the pH range from 2 to 4. The amount of inactivation obtained with a given dose of x-rays depends on the pH of the solution being irradiated and the nature of the solvent. The reaction yield-pH curve is a symmetrical one, with minimum yields at about pH 7. Buffers such as acetate, citrate, borate and barbiturate, and other organic molecules such as ethanol and glucose, in concentrations as low as 20 µM, inhibit the inactivation of trypsin by x-radiation. Sigmoid inactivation-dose curves instead of exponential ones are obtained in the presence of ethanol. The reaction yields for the inactivation of trypsin solutions by x-rays are approximately 1.5 times greater when the irradiation is done at 26°C. than when it is done at 5°C., when 0.005 N hydrochloric acid is the solvent. The dependence on temperature is less when 0.005 N sulfuric acid is used, and is negligible with 0.005 N nitric acid. The difficulties involved in interpreting radiation effects in aqueous systems, and in comparing the results obtained under different experimental conditions, are discussed.


2020 ◽  
Vol 39 (3) ◽  
pp. 800-806
Author(s):  
K.I. Ayinla ◽  
A.A. Baba ◽  
S. Girigisu ◽  
O.S. Bamigboye ◽  
B.C. Tripathy ◽  
...  

Considering the recent focus of the Nigeria Government to grow and develop the nation’s economy through the solid minerals sector reform, this study has been devoted to the kinetics of a Nigerian goethite ore by hydrochloric acid leaching for improved iron and steel industries applications. This study was performed in three different phases. In the first phase, acidic leaching of iron from a goethite ore was examined and the influence of the operating variables including: HCl concentration, leaching temperature, stirring speed and particle sizes was examined experimentally. The optimum condition was found to be HCl concentration of 1.81M, temperature of 80°C, 200 rpm stirring speed and particle size 0.09 μm for iron in the range of investigated parameters. Under those conditions, the highest iron recovery was obtained to be 95.67 %. In the second phase, the dissolution kinetics of iron was evaluated by the shrinking core models. The finding reveals that diffusion through the fluid was the leaching kinetics rate controlling step of the iron. The activation energy (Ea) was found to be 14.54 kJmol-1 for iron. Equation representing the leaching kinetic of iron was achieved to be 1−2/3α - (1 − x)2/3 = 0.7272 × e−38.29/8.314×T × t. The final stage of the experiment was carried out by characterizing the leached residues by X-ray diffractometer (XRD) and scanning electron microscopy (SEM), the result showed majorly the presence of rutile (TiO2), anglesite (PbSO4), and traces of iron-silicate face like pyrite (FeS), quartz (SiO2). Keywords: kinetics modelling, leaching, low-grade, recovery, shrinking core


2011 ◽  
Vol 52 (3) ◽  
pp. 209-216 ◽  
Author(s):  
Nikhil Dhawan ◽  
M. Sadegh Safarzadeh ◽  
Mustafa Birinci

2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Marouane Amine ◽  
Fatima Asafar ◽  
Latifa Bilali ◽  
Mehdi Nadifiyine

Phosphate is a very important natural resource in Morocco and one of the secondary resources of rare earth elements. Our study is particularly interested in Youssoufia phosphate, which contains 228.77 ppm of rare earth elements (ΣREEs). The purpose of our work is to study the influence of different parameters (acid concentration, solid/liquid ratio and temperature) in order to determine the optimal conditions for the leaching of rare earths. An experimental design (Doehlert matrix) has been drawn up to optimize the experimental conditions of the leaching. All tests were made with nitric acid at different concentrations varying between 1.5M and 4.5M with a solid/liquid ratio of 1/12 to 1/6; reaction temperature and duration are respectively 20°C to 80 °C and 60 min. The optimal conditions are obtained when using 69 °C as temperature, 4.1 M as acid concentration and 1/9 as solid/liquid ratio.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Aichun Zhao ◽  
Ting-an Zhang ◽  
Guozhi Lv ◽  
Wenyan Tian

Gibbsitic bauxite from Australia was leached by hydrochloric acid in this work. Analysis on kinetics for the extraction of Al2O3was quantitatively studied. It was concluded that the hydrochloric acid leaching process of gibbsitic bauxite was controlled by chemical reaction. Moreover, the mechanism for the dissolution followed the equation,ln⁡k=39.44-1.66×104(1/T), with an apparent activation energy of 137.90 kJ/mol, according to the equation ofk=Ae-Ea/RT. This work aims to provide a good theory support for the process control by using a new method of alumina production from the low grade bauxite.


Sign in / Sign up

Export Citation Format

Share Document