Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: II. Heats of immersion, swelling pressures and thermodynamic properties

Clay Minerals ◽  
1990 ◽  
Vol 25 (4) ◽  
pp. 499-506 ◽  
Author(s):  
G. Kahr ◽  
F. Kraehenbuehl ◽  
H. F. Stoeckli ◽  
M. Müller-Vonmoos

AbstractA number of thermodynamic properties were obtained from the determination of adsorption isotherms and enthalpies of immersion for systems with water and Na- and Ca-bentonites. Entropy differences were calculated by combining the enthalpies of immersion and the changes in free energy derived from the adsorption isotherms. The swelling pressures, also calculated from the water adsorption isotherms, are in satisfactory agreement with the experimental data.

1998 ◽  
Vol 16 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Ching-Yuan Chang ◽  
Chih-Yin Ho

Of the major replacements for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) are now accepted as being prime contributors to stratospheric ozone depletion. As a consequence, the development of adsorbents capable of adsorbing and recovering specific HCFCs has received great attention. This paper describes an investigation of the adsorption equilibrium of 1, 1-dichloro-1-fluoroethane (HCFC-141b) vapour on a commercial hydrophobic zeolite. The corresponding Henry, Freundlich and Dubinin–Radushkevich (D–R) equilibrium isotherms have been determined and found to correlate well with the experimental data. Based on the Henry adsorption isotherms obtained at 283, 303 and 313 K. thermodynamic properties such as the enthalpy, free energy and entropy of adsorption have been computed for the adsorption of HCFC-141b vapour on the adsorbent. The results obtained could be useful in the application of HCFC adsorption on the hydrophobic zeolite studied.


Clay Minerals ◽  
1987 ◽  
Vol 22 (1) ◽  
pp. 1-9 ◽  
Author(s):  
F. Kraehenbuehl ◽  
H.F. Stoeckli ◽  
F. Brunner ◽  
G. Kahr ◽  
M. Mueller-Vonmoos

AbstractThe adsorption and desorption of water, the layer spacing of the montmorillonite with increasing water content and the heat of immersion with water have been measured for a Na-bentonite and two Ca-bentonites. The bentonite-water system is treated in terms of a micropore-filling process. Uptake of water occurs in discrete stages as the montmorillonite structure expands and the internal surface is calculated from these discrete stages of water adsorption.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


2019 ◽  
Author(s):  
Andrew McCluskey ◽  
Tom Arnold ◽  
Joshaniel F. K. Cooper ◽  
Tim Snow

The analysis of neutron and X-ray reflectometry data is important for the study of interfacial soft matter structures. However, there is still substantial discussion regarding the analytical models<br>that should be used to rationalise relflectometry data. In this work, we outline a robust and generic framework for the determination of the evidence for a particular model given experimental data, by<br>applying Bayesian logic. We apply this framework to the study of Langmuir-Blodgett monolayers by considering three possible analytical models from a recently published investigation [Campbell et al., J. Colloid Interface Sci, 2018, 531, 98]. From this, we can determine which model has the most evidence given the experimental data, and show the effect that different isotopic contrasts of neutron reflectometry will have on this. We believe that this general framework could become an important component of neutron and X-ray reflectometry data analysis, and hope others more regularly consider the relative evidence for their analytical models.<br>


2020 ◽  
pp. 58-63
Author(s):  
M. M. Sidorov ◽  
N. I. Golikov ◽  
R. P. Tihonov

The work evaluates the stress deformed state of the section of the interfield gas collecting main, running in permanently frozen grounds. The object of research is a section of a pipeline with an arched discharge formed as a result of loss of stability as a result of thermal erosion of permanently frozen grounds to disturbance of the vegetation cover. The determination of stresses was carried out by the X-ray method using portable equipment. The experimental data were analyzed with the calculated. The calculated data were obtained by measuring the spatial position of the gas pipeline section. The obtained values of the acting stresses and the estimates of the critical indicators of the gas pipeline monitoring section made it possible to reasonably estimate the stress state. The methodology for determining the acting stresses of pipelines using portable X-ray equipment can be successfully applied to estimate the stressed-deformed state of pipeline systems running in the zone of permafrost.


1993 ◽  
Vol 8 (2) ◽  
pp. 89-97 ◽  
Author(s):  
G. Berti

Line profiles of a powder diffraction pattern and the aberrations which affect the centroid and the variances of the peaks have been analyzed using the visualization in scientific computing (ViSC) systems. The constrained optimization of those aberrations has been derived from the theory developed by Wilson (1963). It allows the determination of systematic instrumental effects and gives indication of other diffraction effects related to the samples. The CuKβradiation was used to process the experimental data directly as it is comprised of only one single wavelength.


2013 ◽  
Vol 20 (5) ◽  
pp. 721-728 ◽  
Author(s):  
Alexandr Nasedkin ◽  
Jan Davidsson ◽  
Mont Kumpugdee-Vollrath

Small-angle X-ray scattering has been employed to study how the introduction of paracetamol and acetylsalicylic acid into a liposome bilayer system affects the system's nanostructure. An X-ray scattering model, developed for multilamellar liposome systems [Pabstet al.(2000),Phys. Rev. E,62, 4000–4009], has been used to fit the experimental data and to extract information on how structural parameters, such as the number and thickness of the bilayers of the liposomes, thickness of the water layer in between the bilayers, size and volume of the head and tail groups, are affected by the drugs and their concentration. Even though the experimental data reveal a complicated picture of the drug–bilayer interaction, they clearly show a correlation between nanostructure, drug and concentration in some aspects. The localization of the drugs in the bilayers is discussed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C224-C224
Author(s):  
Melanie Nentwich ◽  
Matthias Zschornak ◽  
Carsten Richter ◽  
Dmitri Novikov ◽  
Dirk Meyer

Holmium-Palladium-Silicide Ho2PdSi3 is a member of rare earth-transition metal silicides exhibiting a wide range of interesting magnetic and electrical properties like multiple transition temperatues. The crystal structure results from HoSi2 by substitution of Si by Pd which is ordering commensurably with a 2 × 2 × 8 superstructure confirmed by a previous XRD and a Diffraction Anomalous Fine Structure (DAFS) measurement of the super structure reflection 1/2 1/2 3/8. DAFS is a X-ray method combining the advantages of absorption and diffraction and hence offers the possibility of element and site selective studies. Thus, it was feasible to probe the local environment of Ho and Pd separately. In the following, we will present a comparison of several structure proposals of Ho2PdSi3 with experimental data from beamline E2 and BW1 of the former synchrotron DORIS III at DESY/HASYLAB.


Sign in / Sign up

Export Citation Format

Share Document