Some aspects of Tertiary acid magmatism in NE Ireland

1984 ◽  
Vol 48 (348) ◽  
pp. 351-363 ◽  
Author(s):  
I. G. Meighan ◽  
D. Gibson ◽  
D. N. Hood

Abstract Geochemical data (including REE determinations) are presented for all five Mourne Mountains granites and three Northern Ireland rhyolites. These confirm (1) the extremely fractionated nature of some of the rocks (Sr and Ba < 10 ppm, Rb > 400 ppm, Eu/Eu* < 0.1, and K/Rb < 100), and (2) a major revision to the outcrops of the E. Mourne granites G1 and G2 in which much of the former is reclassified as G2. Combined petrographic and geochemical studies have also indicated that magmatic pulses were involved in the emplacement of Mourne intrusions G2 (Revised)-G5 inclusive. The N. Ireland Tertiary acid rocks exhibit general geochemical similarities to their analogues elsewhere in the British Tertiary Igneous Province (in which Sr is generally < 100 ppm and CeN/YbN generally < 8 with Eu/Eu* often < 0.6), but as a suite the Mourne granites are enriched in Rb and some other LIL elements relative to their N. Arran counterparts. The more fractionated acid magmas of NE Ireland are believed to have evolved from primitive granitic parent liquids by crystal fractionation at depth which involved major and accessory phases (including zircon and allanite). In the Mourne (and County Antrim) areas the primitive acid compositions lie at the ends of basaltic (tholeiitic) differentiation series, and in the Mourne central complex there is a complete geochemical sequence from basic rocks through intermediate members to primitive and ultimately highly evolved, subalkaline, granitic intrusions. It is concluded that the data are consistent with the Mourne granites and Northern Ireland rhyolites being essentially basaltic differentiates, although Sr isotope evidence indicates some (probably minor) crustal involvement.

2011 ◽  
Vol 149 (1) ◽  
pp. 67-79 ◽  
Author(s):  
MORGANE LEDEVIN ◽  
NICHOLAS ARNDT ◽  
MARK R. COOPER ◽  
GARTH EARLS ◽  
PAUL LYLE ◽  
...  

AbstractThe gabbroic Portrush Sill in Northern Ireland, part of the North Atlantic Igneous Province, intruded Lower Jurassic mudstones and siltstones about 55 Ma ago. We used petrologic observations and geochemical analyses to study how the sill interacted with the sedimentary rocks. Field relationships show that an Upper Sill and numerous associated Minor Intrusions were emplaced in the sedimentary host rocks before intrusion of the Main Sill, some 10 m above its upper contact. Geochemical analyses reveal two magma contamination processes: Nb and Ta anomalies, coupled with incompatible element enrichment, record contamination by deep crustal rocks, whereas Li, Pb and Ba anomalies reveal a superficial contamination through fluid circulation at the contact between magmatic and sedimentary rocks. Analysis of mineral assemblages and geochemical data from the contact aureole demonstrate uniform metamorphic conditions between the two main intrusions and an absence of a thermal gradient. The identification of pyrrhotite by magnetization analyses and of orthopyroxene by microprobe analyses indicates very high temperatures, up to 660°C. Thermal modelling explains these temperatures as the coupled effects of the Main Sill and the earlier intruded Upper Sill and Minor Intrusions. Even though the chemical composition of the Main Sill suggests another type of parental liquid, all three units were emplaced in a very short time, certainly less than five years.


1996 ◽  
Vol 8 (2) ◽  
pp. 90-104 ◽  
Author(s):  
Janette Lee

A model for more accurately representing the distribution of population is currently under development using some of the functionality of the Arc/Info GIS software. Included are factors for settlement pattern, topography and the presence of water bodies. The model is tested on County Antrim in Northern Ireland and the value of traditional choropleth mapping assessed in comparison with the output from the model.


2020 ◽  
Vol 18 ◽  
pp. 63-73
Author(s):  
C. I. Adamu ◽  
E.E. Okon ◽  
D.O. Inyang

Active stream sediments generally consist of broken-down fragments of pre-existing rocks by the action of river (stream) flow. This makes them target materials for routine geochemical surveys and provenance analysis. Fifteen (15) stream sediment samples were collected in some parts of Bula and its environs, northeastern Nigeria, in order to determine their textural characteristics, heavy mineral and elemental composition. The sediments were subjected to granulometric, heavy mineral and elemental analyses. The result of granulometric analysis show that the streamsediments are poorly to moderately well sorted, very platykurtic to leptokurtic, fine to medium grained and positively skewed. Zircon, rutile and tourmaline are the dominant heavy mineral species occurring in the sediments. The computed Zircon-Tourmaline-Rutile (ZTR) index values for the samples range from 59.18 - 83.53, indicating mineralogical maturity. The geochemical data of the stream sediment samples show that the mean contents of the trace elements [Ti (0.73 ± 0.74%), Fe (0.39±0.19%), Cr (816±639ppm), Ni (258±108ppm), Pb (48±12.37ppm) and Zn (502±126ppm)] were higher than their respective average crustal values except for Fe. Computed threshold values indicate possible mineralization containing Fe and Ti. The elements have variable spatial distribution. The study shows that the trace elements composition of the stream sediments is majorly lithogenic. Because mineralization in rocks and sediments are often characterized by considerable variation in their trace elements contents, the metal concentrations in these sediments are large enough for Ilmenite and Rutile mineralization to be suspected within the study area.


2021 ◽  
pp. M55-2018-39 ◽  
Author(s):  
David H. Elliot ◽  
Thomas. H. Fleming

AbstractThe Lower Jurassic Ferrar Large Igneous Province consists predominantly of intrusive rocks, which crop out over a distance of 3500 km. In comparison, extrusive rocks are more restricted geographically. Geochemically, the province is divided into the Mount Fazio Chemical Type, forming more than 99% of the exposed province, and the Scarab Peak Chemical Type, which in the Ross Sea sector is restricted to the uppermost lava. The former exhibits a range of compositions (SiO2 = 52–59%; MgO = 9.2–2.6%; Zr = 60–175 ppm; Sri = 0.7081–0.7138; εNd = −6.0 to −3.8), whereas the latter has a restricted composition (SiO2 = c. 58%; MgO = c. 2.3%; Zr = c. 230 ppm; Sri = 0.7090–0.7097; εNd = −4.4 to −4.1). Both chemical types are characterized by enriched initial isotope compositions of neodymium and strontium, low abundances of high field strength elements, and crust-like trace element patterns. The most basic rocks, olivine-bearing dolerites, indicate that these geochemical characteristics were inherited from a mantle source modified by subduction processes, possibly the incorporation of sediment. In one model, magmas were derived from a linear source having multiple sites of generation each of which evolved to yield, in sum, the province-wide coherent geochemistry. The preferred interpretation is that the remarkably coherent geochemistry and short duration of emplacement demonstrate derivation from a single source inferred to have been located in the proto-Weddell Sea region. The spatial variation in geochemical characteristics of the lavas suggests distinct magma batches erupted at the surface, whereas no clear geographical pattern is evident for intrusive rocks.


2006 ◽  
Vol 143 (6) ◽  
pp. 887-903 ◽  
Author(s):  
R. J. ROBERTS ◽  
F. CORFU ◽  
T. H. TORSVIK ◽  
L. D. ASHWAL ◽  
D. M. RAMSAY

The Seiland Igneous Province (SIP) of northern Norway comprises a suite of mainly gabbroic plutons, with subordinate ultramafic, syenitic and felsic intrusions. Several intrusions from the Seiland Igneous Province have been dated by ID-TIMS U–Pb zircon and monazite analyses. The Hasvik Gabbro on the island of Sørøy, previously assigned an age of 700±33 Ma by Sm–Nd, yields a U–Pb zircon age of 562±6 Ma, within error of the Storelv Gabbro (569±5 Ma) and a diorite associated with the Breivikbotn Gabbro (571±4 Ma). Various intrusions on the Øksfjord peninsula give nearly identical ages of 565±9 Ma (gabbro), 566±4 Ma (monzonite), 565±5 Ma (monzodiorite), 570±9 Ma (norite), and 566±1 Ma (orthopyroxenite). These ages overlap with those from Sørøy, and define a single and short-lived period of gabbroic (to felsic) magmatism for the region between 570 and 560 Ma, pre-dating a subordinate episode of alkalic magmatism at 530–520 Ma. The U–Pb ages contradict the previous geochronological interpretation for the Finnmark area, which implied a period of 250 m.y. for the emplacement of the SIP intrusions. The new age data also clearly distinguish the Seiland intrusions, emplaced into the Sørøy Group metasediments of the Kalak Nappe Complex, from several older granitic intrusions (c. 850 to 600 Ma) that cut the Sørøy Group farther east and south. The coincident ages of the different Seiland intrusive bodies also contradict the previous structural model for the area, which posits that the different gabbro bodies were emplaced at intervals, with compressional deformation affecting the gabbros between periods of intrusion. The short time span between the main plutonic phases strongly suggests that the mechanism for the emplacement of mafic magma operated in a single, probably extensional, tectonic regime. The mafic intrusions were later deformed and metamorphosed to at least amphibolite facies, most likely by the Scandian (420 Ma) phase of the Caledonian Orogeny.


Sign in / Sign up

Export Citation Format

Share Document