Garnet-quartz intergrowths in graphitic pelites: the role of the fluid phase

1986 ◽  
Vol 50 (358) ◽  
pp. 611-620 ◽  
Author(s):  
Kevin W. Burton

AbstractGarnets with an unusual inclusion pattern of cylindrical quartz intergrowths have been found to develop exclusively in the presence of graphite. The intergrowths consist of quartz rods, 1–5 µm in diameter, originating at the sector-zone interfaces in the garnet with the long axes normal to the crystal faces. The lattice orientation and continuity of the quartz suggests that the interphase boundaries between the quartz and garnet are epitaxially related and that new material was added to the tube as the crystal face of the garnet grew. In the presence of a C-O-H fluid, at the temperatures and pressures recorded, (P = 6.5 kbar, T = 500°C), the amount of CO2 present restricts the solubility of SiO2 in the intergranular fluid phase, where the oxygen fugacity (fo2) is below the Quartz-fayalite-magnetite (QFM) buffer, and within the stability field of graphite. The reduced solubility will lower the concentration of SiO2 in solution, and hence restrict its ease of transport via the fluid, resulting in an excess of SiO2at the site of garnet growth. Under such conditions the SiO2 is incorporated in the growing garnet in the form of the cylindrical quartz intergrowths.

Author(s):  
Markus Guido Herrmann ◽  
Ralf Peter Stoffel ◽  
Michael Küpers ◽  
Mohammed Ait Haddouch ◽  
Andreas Eich ◽  
...  

The high-pressure and low-temperature behaviour of the GeSe x Te1−x system (x = 0, 0.2, 0.5, 0.75, 1) was studied using a combination of powder diffraction measurements and first-principles calculations. Compounds in the stability field of the GeTe structure type (x = 0, 0.2, 0.5) follow the high-pressure transition pathway: GeTe-I (R3m) → GeTe-II (f.c.c.) → GeTe-III (Pnma). The newly determined GeTe-III structure is isostructural to β-GeSe, a high-pressure and high-temperature polymorph of GeSe. Pressure-dependent formation enthalpies and stability regimes of the GeSe x Te1−x polymorphs were studied by DFT calculations. Hexagonal Ge4Se3Te is stable up to at least 25 GPa. Significant differences in the high-pressure and low-temperature behaviour of the GeTe-type structures and the hexagonal phase are highlighted. The role of Ge...Ge interactions is elucidated using the crystal orbital Hamilton population method. Finally, a sketch of the high-pressure phase diagram of the system is provided.


2021 ◽  
Author(s):  
Julien Fort ◽  
Stanislas Sizaret ◽  
Michel Pichavant ◽  
Arnault Lassin ◽  
Johann Tuduri ◽  
...  

<p>Tourmaline records the physico chemical conditions during its cristallisation, as its primary chemical zonations are generally unbalanced, its occurrence as alteration product could be used to decipher the physicochemical properties of mineralizing fluids. However, the role of the tourmalinisation in hydrothermal processes remains little studied, if not poorly understood.  The complexity of its thermodynamic properties is related to the presence of four cationic sites allowing the accommodation of a wide variety of elements (Henry and Dutrow, 2018). Moreover the phenomena of deprotonation, Si-<sup>IV</sup>B and valence state, make the approach of solid solution properties complex (Hughes et al., 2001; Henry et al., 2011; Bačík, 2015; Morgan, 2016). Thus, thermodynamic properties are most often estimated  (Garofalo et al., 2000; Hinsberg and Schumacher, 2007) and only a few measurements could be carried out on a reduced number of near-endmembers crystals (Kuyunko et al., 1984; Ogorodova et al., 2012).</p><p>This study aims to investigate experimentally the stability field of schorl (Na-Fe) – dravite (Na-Mg) solid solution at 2 kbar total pressure between 400° and 600°C as a function of the boron content of the fluid and fO2 condition, using an internally heated gas apparatus. Those metasomatic experiments have been conducted on a mixture of naturals crystals of cordierite + albite, representing a peraluminous granite composition in a Na-Mg-Fe-Al-Si-B-O-H system, characterized by a high-Mg, low-Fe content. These experiments were performed in order to simulate a classic aluminous host of these tourmaline alterations in granitic context. The results will be studied, in terms of stability of the tourmaline species, chemistry variation and texture. They will be compared with thermodynamic models build using data from the literature (Korges et al., 2018; Pan et al., 2019 among others) . Ultimately, the objective is to characterize in a P, T, W/R space, the chemical evolution of fluids, the alteration sequence of rocks and the variations in volumes related to the successive reactions.</p>


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document