Criddleite, TlAg2Au3Sb10S10, a New Gold-Bearing Mineral from Hemlo, Ontario, Canada

1988 ◽  
Vol 52 (368) ◽  
pp. 691-697 ◽  
Author(s):  
Donald C. Harris ◽  
Andrew C. Roberts ◽  
J. H. Gilles Laflamme ◽  
Chris J. Stanley

AbstractCriddleite, ideally TlAg2Au3Sb10S10, is a rare constituent within the Hemlo gold deposit, Hemlo, Ontario, Canada. The mineral occurs as 20 to 50 µm-sized lath-like, tabular or anhedral grains usually surrounding or penetrating aurostibite, or associated with native antimony, native gold and stibnite. Criddleite is opaque with a metallic lustre and a black streak. It has been synthesized by reacting TlSbS2 and high purity Ag, Au, Sb and S in an evacuated silica glass tube at 400 °C. The measured density of the synthetic material is 6.86; the calculated density is 6.57 g/cm3. The difference is due to minor admixed aurostibite, native antimony and a dyscrasite-like phase within the charge. VHN25 is 94–129. Mohs hardness (calc.) = 3–3 ½. In reflected plane-polarized light in air, natural criddleite is weakly bireflectant with a discernible reflectance pleochroism from grey-blue to slightly greenish grey-blue. The mineral has a distinct to moderate anisotropy with rotation tints in shades of buff to slate grey. Reflectance spectra and colour values for both natural and synthetic criddleite are given. X-ray study showed that synthetic criddleite is monoclinic (pseudotetragonal) with refined unit-cell parameters a = 20.015(2), b = 8.075(2), c = 7.831(2) Å, β = 92.01(2)°, V = 1264.9 ± 1.0 Å3 and a:b:c = 2.4786: 1:0.9698. The space group choices are A2/m(12), A2(5) or Am(8), diffraction aspect A*/*. The seven strongest lines in the X-ray powder diffraction pattern [d in Å (I) (hkl)] are: 5.63(90) (011), 3.91(50) (002), 3.456(50) (320), 2.860(70) (700), 2.813(100) (022), 2.018(60) (040) and 1.959(70) (004). Electron microprobe analyses are reported of natural criddleite in five polished sections of drill core from four holes. The averaged empirical formulae, based on 26 atoms, are Tl0.92Ag1.99Au2.93Sb9.87S10.28 (natural) and Tl0.94Ag2.03Au2.89Sb9.76S10.38 (synthetic).

2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


1989 ◽  
Vol 53 (369) ◽  
pp. 79-83 ◽  
Author(s):  
Donald C. Harris ◽  
Andrew C. Roberts ◽  
Alan J. Criddle

AbstractVaughanite, idealized formula T1HgSb4S7, is a very rare primary constituent of the Golden Giant orebody of the Hemlo gold deposit, Hemlo, Ontario, Canada. It was found in two polished sections from one drill core; as a 450 by 300 µm aggregate associated with pääkkönenite, stibnite, realgar, and native arsenic; and as a 40 µm anhedral grain associated with stibarsen and chalcostibite. Vaughanite is opaque with a metallic lustre and a black streak. No cleavage was observed but parting, produced by indentation, was detected as a series of weak parallel traces. It is brittle, with an even, occasionally arcuate, fracture. VHN25 is 100–115, mean 104. Mohs hardness (calc.) = 3−3½. In refected plane-polarized light in air the bireflectance is weak to moderate; the pleochroism is also weak, from a somewhat greenish grey to slightly darker bluish grey. Anisotropism is moderate to strong, with rotation tints in shades of green, yellow, purplish brown to brown. Reflectance spectra and colour values are tabulated. The colour in air is light grey. Internal reflections are rare but are arterial-blood-red on indentation fractures. X-ray studies have shown that vaughanite is triclinic with refined unit-cell parameters a 9.012 (3), b 13.223 (3), c 5.906 (2) Å, α 93.27 (3)°, β 95.05 (4)°, γ 109.16 (3)°, V 659.46 (80) Å3, a:b:c = 0.6815 : 1 : 0.4466 and Z = 2. The space group choices are P1 (1) or (2), diffraction aspect P*. The five strongest lines in the X-ray powder pattern [d in Å (l) (hkl)] are: 4.343 (30) (), 4.204 (100) (), 3.313 (60) (130), 2.749 (40) (, 131) and 2.315 (30) (, 122). The average of five electron microprobe analyses gave T1 18.3 (2), Hg 17.5 (2), Sb 43.4 (3), As 1.1 (1), S 20.5 (5), total 100.8 wt. %, corresponding, on the basis of total atoms = 13, to T10.98Hg0.95(Sb3.90As0.17)Σ4.07S7.00. The calculated density is 5.56 g/cm3 for the empirical formula and 5.62 g/cm3 for the simplified formula. The mineral is named for Professor David J. Vaughan.


2018 ◽  
Vol 83 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Irina O. Galuskina ◽  
Frank Gfeller ◽  
Evgeny V. Galuskin ◽  
Thomas Armbruster ◽  
Yevgeny Vapnik ◽  
...  

AbstractDargaite, ideally BaCa12(SiO4)4(SO4)2O3, is an additional member of the arctite group belonging to minerals with a modular intercalated antiperovskite structure derived from hatrurite. The holotype specimen was found at a small outcrop of larnite pseudoconglomerates in the Judean Mts, West Bank, Palestinian Autonomy. Larnite, fluorellestadite–fluorapatite, brownmillerite, fluormayenite–fluorkyuygenite and ye'elimite are the main minerals of the holotype specimen; ternesite, shulamitite and periclase are noted rarely. Dargaite, nabimusaite and gazeevite occur in linear zones with higher porosity within larnite rocks. Pores are filled with ettringite and Ca-hydrosilicates, less commonly with gibbsite, brucite, baryte, katoite and calciolangbeinite. Dargaite is colourless, transparent with a white streak and has a vitreous lustre. It exhibits pronounced parting and imperfect cleavage along (001). Mohs’ hardness is ~4.5–5.5. The empirical formula is (Ba0.72K0.24Na0.04)Σ1(Ca11.95Mg0.04Na0.01)Σ12([SiO4]0.91 [PO4]0.05[AlO4]0.03[Ti4+O4]0.01)Σ4([SO4]0.84[PO4]0.14[CO3]0.02)Σ2(O2.54F0.46)Σ3. Dargaite is trigonal R$\overline 3 $m, the unit-cell parameters are: a = 7.1874(4) Å, c = 41.292(3) Å, V = 1847.32(19) Å3 and Z = 3. The crystal structure of dargaite was refined from X-ray single-crystal data to R1 = 3.79%. The calculated density is 3.235 g cm–3. The following main Raman bands are distinguished on the holotype dargaite (cm–1): 122, 263, 323, 464, 523, 563, 641 and 644, 829 and 869, 947, 991 and 1116. The formation conditions of dargaite are linked to the local occurrence of pyrometamorphic by-products (gases, fluids and melts) transforming earlier mineral associations at ~900°C.


2017 ◽  
Vol 81 (3) ◽  
pp. 591-610 ◽  
Author(s):  
Adam Pieczka ◽  
Frank C. Hawthorne ◽  
Chi Ma ◽  
George R. Rossman ◽  
Eligiusz Szełęg ◽  
...  

AbstractŻabińskiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, was found in a Variscan granitic pegmatite at Piława Górna, Lower Silesia, SW Poland. The mineral occurs along with (Al,Ta,Nb)- and (Al,F)-bearing titanites, a pyrochlore-supergroupmineral and a K-mica in compositionally inhomogeneous aggregates, ∼120 μm × 70 μm in size, in a fractured crystal of zircon intergrown with polycrase-(Y) and euxenite-(Y). Żabińskiite is transparent, brittle, brownish, with a white streak, vitreous lustre and a Mohs hardness of ∼5. The calculated density for the refined crystal is equal to 3.897 g cm–3, but depends strongly on composition. The mineral is non-pleochroic, biaxial (–), with mean refractive indices ≥1.89. The (Al,Ta,Nb)-richest żabińskiite crystal,(Ca0.980Na0.015)∑=0.995(Al0.340Fe3+0.029Ti0.298V0.001Zr0.001Sn0.005Ta0.251Nb0.081)∑=1.005[(Si0.988Al0.012)O4.946F0.047(OH)0.007)∑=5.000];60.7 mol.% Ca[Al0.5(Ta,Nb)0.5](SiO4)O; is close in composition to previously described synthetic material. Żabińskiite is triclinic (space group symmetry A1) and has unit-cell parameters a = 7.031(2) Å, b = 8.692(2) Å,c = 6.561(2) Å, α = 89.712(11)°, β = 113.830(13)°, γ = 90.352(12)° and V = 366.77 (11) Å3. It is isostructural with triclinic titanite and bond-topologically identical with titanite and other minerals of the titanite group.Żabińskiite crystallized along with (Al,Ta,Nb)-bearing titanites at increasing Ti and Nb, and decreasing Ta activities, almost coevally with polycrase-(Y) and euxenite-(Y) from Ca-contaminated fluxed melts or early hydrothermal fluids.


2009 ◽  
Vol 73 (5) ◽  
pp. 871-881 ◽  
Author(s):  
W. H. Paar ◽  
A. Pring ◽  
Y. Moëlo ◽  
C. J. Stanley ◽  
H. Putz ◽  
...  

AbstractDaliranite, ideally PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran, occurs as a rare sulphosalt species at the Carlin-type Zarshouran Au-As deposit North of the town of Takab in the Province of West Azarbaijan, Iran. The new species is associated with orpiment, rarely with galkhaite, hutchinsonite and cinnabar. The strongly silicified matrix of the specimens has veinlets of sphalerite, with rare inclusions of galena and various (Cu)-Pb-As(Sb) sulphosalts. Daliranite occurs as matted nests of acicular and flexible fibres up to 200 μm in length and a width less than a few μm. The colour is orange-red with a pale orange-red streak and the lustre is adamantine. The mineral is transparent and does not fluoresce. The Mohs hardness is <2. Electron microprobe analyses give the empirical formula Pb0.95Tl0.01Hg1.04As2.10S5.91, ideally PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran; the calculated density is 5.93 g cm–3. Unit-cell parameters were determined by an electron-diffraction study and refined from X-ray powder data. Daliranite is monoclinic primitive with a = 19.113(5) Å, b = 4.233(2) Å, c = 22.958(8) Å, β = 114.78(5)°, V = 1686.4 Å3 and Z = 8, a:b:c = 4.515:1:5.424, space group P2, Pm or P2/m. The strongest X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 8.676, (80), (200); 4.654, (50), (401); 3.870, (40), (211); 3.394, (50), (113); 3.148, (40b), (602); 2.892, (50), (600); 2.724, (100), (703); 2.185, (50), (319). The formula shows a sulphur excess which may correspond to S—S bonding (persulphide). The new sulphosalt is a late phase in the crystallization sequence, and was formed after orpiment, contemporaneously with quartz II, at a temperature between 157 and 193°C. The name honours Dr Farahnaz Daliran (University of Karlsruhe, Germany) in recognition of her outstanding contributions to research on ore deposits, especially Au, Zn and Fe, in Iran.


2013 ◽  
Vol 77 (7) ◽  
pp. 2931-2939 ◽  
Author(s):  
U. Hålenius ◽  
F. Bosi

AbstractOxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.


2019 ◽  
Vol 57 (4) ◽  
pp. 467-474
Author(s):  
Pietro Vignola ◽  
Nicola Rotiroti ◽  
G. Diego Gatta ◽  
Andrea Risplendente ◽  
Frédéric Hatert ◽  
...  

Abstract Huenite, Cu4Mo3O12(OH)2, is a new copper and molybdenum oxy-hydroxide mineral found in the San Samuel Mine, Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, Atacama Region, Chile. This new species forms flattened orthorhombic prisms up to 60–70 μm in size, weakly elongated along [001]. Huenite crystals were found on fractured surfaces of a quartz breccia, forming aggregates 1 mm in diameter in close association with lindgrenite, gypsum, dark grayish-brown tourmaline, and an unknown pale purple phase. The color is very dark reddish-brown, with a strong vitreous to adamantine luster. Its streak is pale reddish-brown to pinkish. The mineral is brittle with an irregular fracture and a Mohs hardness of 3.5–4 with a good cleavage on {010}. Its calculated density is 5.1 g/cm3. The calculated refractive index is 2.18. Huenite is non-fluorescent under 254 nm (short wave) and 366 nm (long wave) ultraviolet light. The empirical formula, calculated on the basis of 3 (Mo+S+Si) atoms per formula unit, is (Cu3.519Fe2+0.403)Σ3.922(Mo2.907S0.090Si0.003)Σ3.000O12·(OH)2.229, with H2O content calculated for a total of 100 wt.%. Huenite is trigonal, with space group P31/c and unit-cell parameters a = 7.653(5) Å, c = 9.411(6) Å, and V = 477.4(5) Å3 for Z = 2. The eight strongest measured powder X-ray diffraction lines are: [d in Å, (I/I0), (hkl)]: 2.974 (100) (112), 1.712 (59.8) (132), 3.810 (50.6) (110), 2.702 (41.2) (022), 2.497 (38.1) (120), 1.450 (37.2) (134), 6.786 (24.9) (010), and 5.374 (24.5) (011). The mineral, which has been approved by the CNMNC under number IMA 2015-122, is named in honor of Edgar Huen.


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


2013 ◽  
Vol 77 (4) ◽  
pp. 467-473 ◽  
Author(s):  
D. Atencio ◽  
M. E. Ciriotti ◽  
M. B. Andrade

AbstractFluorcalcioroméite, (Ca,Na)2Sb25+(O,OH)6F, is a new roméite-group, pyrochlore-supergroup mineral (IMA 2012-093), from Starlera mine, Ferrera, Hinterrhein district, Grischun, Switzerland. The intimately associated minerals are: braunite, hematite, calcite, quartz and, rarely, wallkilldellite-(Mn). It occurs as euhedral octahedra, untwinned, from 0.1 to 1 mm in size. The crystals are yellow to orange and translucent; the streak is white, and the lustre is vitreous to resinous. It is non-fluorescent under ultraviolet light. Mohs' hardness is ∼5½, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 5.113 g/cm3. The mineral is isotropic, ncalc. = 1.826. The Raman spectrum is dominated by bands of Sb–O octahedral bond stretching and O–Sb–O bending modes. The chemical composition (n = 13) is (by wavelength-dispersive spectroscopy (WDS), H2O calculated by difference, wt.%): Na2O 4.11, CaO 15.41, MnO 0.54, CuO 0.01, ZnO 0.01, PbO 0.02, Al2O3 0.10, FeO 0.50, Y2O3 0.07, SiO2 0.04, TiO2 0.01, UO2 0.01, Sb2O5 76.18, WO3 0.78, F 2.79, H2O 0.59, O = F–1.17, total 100.00. The empirical formula, based on 2 cations at the B site, is (Ca1.16Na0.56☐0.22Fe0.032+ Mn0.032+)Σ2.00(Sb5+1.98Al0.01W0.01)Σ2.00O6[F0.62(OH)0.28O0.06☐0.04]Σ1.00. The strongest eight X-ray powder-diffraction lines [d in Å (I)(hkl)] are: 5.934(81)(111), 3.102(20)(311), 2.969(100)(222), 2.572(6)(400), 1.979(7)(333), 1.818(8)(440), 1.551(15)(622), and 1.484(5)(444). The crystal structure refinement (R1 = 0.0106) gave the following data: cubic, Fdm, a = 10.2987(8) Å, V = 1092.31(15) Å3, Z = 8. Unit-cell parameters refined from the powder data are: a = 10.284(2), V = 1087.7(7) Å3, Z = 8.


2012 ◽  
Vol 76 (7) ◽  
pp. 2803-2817 ◽  
Author(s):  
A. R. Kampf ◽  
J. Marty ◽  
B. P. Nash ◽  
J. Plášil ◽  
A. V. Kasatkin ◽  
...  

AbstractCalciodelrioite, ideally Ca(VO3)2(H2O)4, is a new mineral (IMA 2012-031) from the uraniumvanadium deposits of the eastern Colorado Plateau in the USA. The type locality is the West Sunday mine, Slick Rock district, San Miguel County, Colorado. The new mineral occurs on fracture surfaces in corvusite- and montroseite-impregnated sandstone and forms as a result of the oxidative alteration of these phases. At the West Sunday mine, calciodelrioite is associated with celestine, gypsum, huemulite, metarossite, pascoite and rossite. The mineral occurs as transparent colourless needles, bundles of tan to brown needles and star bursts of nearly black broad blades composed of tightly intergrown needles. Crystals are elongate and striated parallel to [100], exhibiting the prismatic forms {001} and {011} and having terminations possibly composed of the forms {100} and {611̄}. The mineral is transparent and has a white streak, subadamantine lustre, Mohs hardness of about 2½, brittle tenacity, irregular to splintery fracture, one perfect cleavage on {001} and possibly one or more additional cleavages parallel to [100]. Calciodelrioite is soluble in water. The calculated density is 2.451 g cm– 3. It is optically biaxial (+) with α = 1.733(3), β = 1.775(3), γ = 1.825(3) (white light), 2Vmeas = 87.3(9)° and 2Vcalc = 87°. The optical orientation is X = b; Z ≈ a. No pleochroism was observed. Electronmicroprobe analyses of two calciodelrioite samples and type delrioite provided the empirical formulae (Ca0.88Sr0.07Na0.04K0.01)Σ1.00(V1.00O3)2(H2.01O)4, (Ca0.76Sr0.21Na0.01)Σ0.98(V1.00O3)2(H2.01O)4 and (Sr0.67Ca0.32)Σ0.99(V1.00O3)2(H2.00O)4, respectively. Calciodelrioite is monoclinic, I2/a, with unit-cell parameters a = 14.6389(10), b = 6.9591(4), c = 17.052(2) Å, β = 102.568(9)°, V = 1695.5(3) Å3 and Z = 8. The seven strongest lines in the X-ray powder diffraction pattern [listed as dobs Å (I)(hkl)] are as follows: 6.450(100)(011); 4.350(16)(013); 3.489(18)(020); 3.215(17)(022); 3.027(50)(multiple); 2.560(28)(4̄15,413); 1.786(18)(028). In the structure of calciodelrioite (refined to R1 = 3.14% for 1216 Fo > 4σF), V5+O5 polyhedra link by sharing edges to form a zigzag divanadate [VO3] chain along a, similar to that in the structure of rossite. The chains are linked via bonds to Ca atoms, which also bond to H2O groups, yielding CaO3(H2O)6 polyhedra. The Ca polyhedra form a chain along b. Each of the two symmetrically independent VO5 polyhedra has two short vanadyl bonds and three long equatorial bonds. Calciodelrioite and delrioite are isostructural and are the endmembers of the series Ca(VO3)2(H2O)4–Sr(VO3)2(H2O)4. Calciodelrioite is dimorphous with rossite, which has a similar structure; however, the smaller 8-coordinate Ca site in rossite does not accommodate Sr.


Sign in / Sign up

Export Citation Format

Share Document