Vaughanite, TlHgSb4S7, a new mineral from Hemlo, Ontario, Canada

1989 ◽  
Vol 53 (369) ◽  
pp. 79-83 ◽  
Author(s):  
Donald C. Harris ◽  
Andrew C. Roberts ◽  
Alan J. Criddle

AbstractVaughanite, idealized formula T1HgSb4S7, is a very rare primary constituent of the Golden Giant orebody of the Hemlo gold deposit, Hemlo, Ontario, Canada. It was found in two polished sections from one drill core; as a 450 by 300 µm aggregate associated with pääkkönenite, stibnite, realgar, and native arsenic; and as a 40 µm anhedral grain associated with stibarsen and chalcostibite. Vaughanite is opaque with a metallic lustre and a black streak. No cleavage was observed but parting, produced by indentation, was detected as a series of weak parallel traces. It is brittle, with an even, occasionally arcuate, fracture. VHN25 is 100–115, mean 104. Mohs hardness (calc.) = 3−3½. In refected plane-polarized light in air the bireflectance is weak to moderate; the pleochroism is also weak, from a somewhat greenish grey to slightly darker bluish grey. Anisotropism is moderate to strong, with rotation tints in shades of green, yellow, purplish brown to brown. Reflectance spectra and colour values are tabulated. The colour in air is light grey. Internal reflections are rare but are arterial-blood-red on indentation fractures. X-ray studies have shown that vaughanite is triclinic with refined unit-cell parameters a 9.012 (3), b 13.223 (3), c 5.906 (2) Å, α 93.27 (3)°, β 95.05 (4)°, γ 109.16 (3)°, V 659.46 (80) Å3, a:b:c = 0.6815 : 1 : 0.4466 and Z = 2. The space group choices are P1 (1) or (2), diffraction aspect P*. The five strongest lines in the X-ray powder pattern [d in Å (l) (hkl)] are: 4.343 (30) (), 4.204 (100) (), 3.313 (60) (130), 2.749 (40) (, 131) and 2.315 (30) (, 122). The average of five electron microprobe analyses gave T1 18.3 (2), Hg 17.5 (2), Sb 43.4 (3), As 1.1 (1), S 20.5 (5), total 100.8 wt. %, corresponding, on the basis of total atoms = 13, to T10.98Hg0.95(Sb3.90As0.17)Σ4.07S7.00. The calculated density is 5.56 g/cm3 for the empirical formula and 5.62 g/cm3 for the simplified formula. The mineral is named for Professor David J. Vaughan.

2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


2013 ◽  
Vol 77 (7) ◽  
pp. 2931-2939 ◽  
Author(s):  
U. Hålenius ◽  
F. Bosi

AbstractOxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


1988 ◽  
Vol 52 (368) ◽  
pp. 691-697 ◽  
Author(s):  
Donald C. Harris ◽  
Andrew C. Roberts ◽  
J. H. Gilles Laflamme ◽  
Chris J. Stanley

AbstractCriddleite, ideally TlAg2Au3Sb10S10, is a rare constituent within the Hemlo gold deposit, Hemlo, Ontario, Canada. The mineral occurs as 20 to 50 µm-sized lath-like, tabular or anhedral grains usually surrounding or penetrating aurostibite, or associated with native antimony, native gold and stibnite. Criddleite is opaque with a metallic lustre and a black streak. It has been synthesized by reacting TlSbS2 and high purity Ag, Au, Sb and S in an evacuated silica glass tube at 400 °C. The measured density of the synthetic material is 6.86; the calculated density is 6.57 g/cm3. The difference is due to minor admixed aurostibite, native antimony and a dyscrasite-like phase within the charge. VHN25 is 94–129. Mohs hardness (calc.) = 3–3 ½. In reflected plane-polarized light in air, natural criddleite is weakly bireflectant with a discernible reflectance pleochroism from grey-blue to slightly greenish grey-blue. The mineral has a distinct to moderate anisotropy with rotation tints in shades of buff to slate grey. Reflectance spectra and colour values for both natural and synthetic criddleite are given. X-ray study showed that synthetic criddleite is monoclinic (pseudotetragonal) with refined unit-cell parameters a = 20.015(2), b = 8.075(2), c = 7.831(2) Å, β = 92.01(2)°, V = 1264.9 ± 1.0 Å3 and a:b:c = 2.4786: 1:0.9698. The space group choices are A2/m(12), A2(5) or Am(8), diffraction aspect A*/*. The seven strongest lines in the X-ray powder diffraction pattern [d in Å (I) (hkl)] are: 5.63(90) (011), 3.91(50) (002), 3.456(50) (320), 2.860(70) (700), 2.813(100) (022), 2.018(60) (040) and 1.959(70) (004). Electron microprobe analyses are reported of natural criddleite in five polished sections of drill core from four holes. The averaged empirical formulae, based on 26 atoms, are Tl0.92Ag1.99Au2.93Sb9.87S10.28 (natural) and Tl0.94Ag2.03Au2.89Sb9.76S10.38 (synthetic).


2017 ◽  
Vol 81 (2) ◽  
pp. 329-338
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
A. R. Kampf ◽  
W. G. Mumme ◽  
C. M. Macrae ◽  
...  

AbstractSteinmetzite, ideally Zn2Fe3+(PO4)2(OH)·3H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Steinmetzite was found in a highly oxidized zone of the Cornelia mine at Hagendorf-Süd. It has formed by alteration of phosphophyllite, involving oxidation of the iron and some replacement of Zn by Fe. Steinmetzite lamellae co-exist with an amorphous Fe-rich phosphate in pseudomorphed phosphophyllite crystals. The lamellae are only a few μm thick and with maximum dimension ∼50 μm. The phosphophyllite pseudomorphs have a milky opaque appearance, often with a glazed yellow to orange weathering rind and with lengths ranging from sub-mm to 1 cm. Associated minerals are albite, apatite, chalcophanite, jahnsite, mitridatite, muscovite, quartz and wilhelmgümbelite.Goethite and cryptomelane are also abundant in the oxidized zone. The calculated density is 2.96 g cm–3. Steinmetzite is biaxial (–) with measured refractive indices α = 1.642(2), β = 1.659 (calc.), γ = 1.660(2) (white light). 2V(meas) = 27(1)°; orientation is Y ≈ b, X ^c ≈ 27°, with crystals flattened on {010} and elongated on [001]. Pleochroism shows shades of pale brown; Y > X ≈ Z. Electron microprobe analyses (average of seven crystals) with Fe reported as Fe2O3 and with H2O calculated from the structure gave ZnO 31.1, MnO 1.7, CaO 0.5, Fe2O3 21.9, Al2O3 0.3, P2O5 32.9, H2O 14.1 wt.%, total 102.5%. The empirical formula based on 2 P and 12 O, with all iron as ferric and OH–adjusted for charge balance is Zn1.65Fe1.193+ Mn0.112+Ca0.03Al0.023+(PO4)2(OH)1.21·2.79H2O. The simplified formula is Zn2Fe3+(PO4)2(OH)·3H2O.Steinmetzite is triclinic, P1̄, with unit-cell parameters: a = 10.438(2), b = 5.102(1), c = 10.546(2) Å, α = 91.37(2), β = 115.93(2) and γ = 94.20(2)°. V = 502.7(3) Å3, Z = 2. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å (I) (hkl)] 9.313(65) (100), 5.077(38) (010), 4.726(47) (002), 4.657(100) (200), 3.365 (55) (3̄02), 3.071(54) (11̄2) and 2.735(48) (3̄1̄2). The structure is related to that of phosphophyllite.


2012 ◽  
Vol 76 (7) ◽  
pp. 2803-2817 ◽  
Author(s):  
A. R. Kampf ◽  
J. Marty ◽  
B. P. Nash ◽  
J. Plášil ◽  
A. V. Kasatkin ◽  
...  

AbstractCalciodelrioite, ideally Ca(VO3)2(H2O)4, is a new mineral (IMA 2012-031) from the uraniumvanadium deposits of the eastern Colorado Plateau in the USA. The type locality is the West Sunday mine, Slick Rock district, San Miguel County, Colorado. The new mineral occurs on fracture surfaces in corvusite- and montroseite-impregnated sandstone and forms as a result of the oxidative alteration of these phases. At the West Sunday mine, calciodelrioite is associated with celestine, gypsum, huemulite, metarossite, pascoite and rossite. The mineral occurs as transparent colourless needles, bundles of tan to brown needles and star bursts of nearly black broad blades composed of tightly intergrown needles. Crystals are elongate and striated parallel to [100], exhibiting the prismatic forms {001} and {011} and having terminations possibly composed of the forms {100} and {611̄}. The mineral is transparent and has a white streak, subadamantine lustre, Mohs hardness of about 2½, brittle tenacity, irregular to splintery fracture, one perfect cleavage on {001} and possibly one or more additional cleavages parallel to [100]. Calciodelrioite is soluble in water. The calculated density is 2.451 g cm– 3. It is optically biaxial (+) with α = 1.733(3), β = 1.775(3), γ = 1.825(3) (white light), 2Vmeas = 87.3(9)° and 2Vcalc = 87°. The optical orientation is X = b; Z ≈ a. No pleochroism was observed. Electronmicroprobe analyses of two calciodelrioite samples and type delrioite provided the empirical formulae (Ca0.88Sr0.07Na0.04K0.01)Σ1.00(V1.00O3)2(H2.01O)4, (Ca0.76Sr0.21Na0.01)Σ0.98(V1.00O3)2(H2.01O)4 and (Sr0.67Ca0.32)Σ0.99(V1.00O3)2(H2.00O)4, respectively. Calciodelrioite is monoclinic, I2/a, with unit-cell parameters a = 14.6389(10), b = 6.9591(4), c = 17.052(2) Å, β = 102.568(9)°, V = 1695.5(3) Å3 and Z = 8. The seven strongest lines in the X-ray powder diffraction pattern [listed as dobs Å (I)(hkl)] are as follows: 6.450(100)(011); 4.350(16)(013); 3.489(18)(020); 3.215(17)(022); 3.027(50)(multiple); 2.560(28)(4̄15,413); 1.786(18)(028). In the structure of calciodelrioite (refined to R1 = 3.14% for 1216 Fo > 4σF), V5+O5 polyhedra link by sharing edges to form a zigzag divanadate [VO3] chain along a, similar to that in the structure of rossite. The chains are linked via bonds to Ca atoms, which also bond to H2O groups, yielding CaO3(H2O)6 polyhedra. The Ca polyhedra form a chain along b. Each of the two symmetrically independent VO5 polyhedra has two short vanadyl bonds and three long equatorial bonds. Calciodelrioite and delrioite are isostructural and are the endmembers of the series Ca(VO3)2(H2O)4–Sr(VO3)2(H2O)4. Calciodelrioite is dimorphous with rossite, which has a similar structure; however, the smaller 8-coordinate Ca site in rossite does not accommodate Sr.


2015 ◽  
Vol 79 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractTapiaite (IMA2014-024), Ca5Al2(AsO4)4(OH)4·12H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, joteite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as colourless blades, flattened on {101} and elongated and striated along [010], up to ∼0.5 mm long, and exhibiting the forms {101}, {101} and {111}. The blades are commonly intergrown in subparallel bundles and less commonly in sprays. The mineral is transparent and has a white streak and vitreous lustre. The Mohs hardness is estimated to be between 2 and 3, the tenacity is brittle, and the fracture is splintery. It has two perfect cleavages on {101} and {101}. The calculated density based on the empirical formula is 2.681 g cm–3. It is optically biaxial (+) with α = 1.579(1), β = 1.588(1), γ = 1.610(1) (white light), 2Vmeas = 66(2)° and 2Vcalc = 66°. The mineral exhibits no dispersion. The optical orientation is X ≈ [101]; Y = b, Z ≈ [101]. The electron-microprobe analyses (average of five) provided: Na2O 0.09, CaO 24.96, CuO 0.73, Al2O3 10.08, Fe2O3 0.19, As2O5 40.98, Sb2O5 0.09, H2 O 23.46 (structure), total 100.58 wt.%. In terms of the structure, the empirical formula (based on 32 O a.p.f.u.) is (Ca4.83Cu0.102+Na0.03)Σ4.96(Al2.14Fe0.033+)Σ2.17[(As3.875+Sb0.015+)Σ3.88O16][(OH)3.76(H2O)0.24]Σ4(H2O)10·2H2O. The mineral is easily soluble in RT dilute HCl. Tapiaite is monoclinic, P21/n, with unit-cell parameters a = 16.016(1), b = 5.7781(3), c = 16.341(1) Å, β = 116.704(8)°, V = 1350.9(2) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs Å(I)(hkl)]: 13.91(100)(101), 7.23(17)(200,002), 5.39(22)(110,011), 4.64(33)(112,211,303), 3.952(42)(113,311,213), 3.290(35)(214,412,114,411), 2.823(39)(303,315) and 2.753(15)(513,115,121,511). The structure of tapiaite (R1 = 5.37% for 1733 Fo > 4σF) contains Al(AsO4)(OH)2 chains of octahedra and tetrahedra that are topologically identical to the chain in the structure of linarite. CaO8 polyhedra condense to the chains, forming columns, which are decorated with additional peripheral AsO4 tetrahedra. The CaO8 polyhedra in adjacent columns link to one another by corner-sharing to form thick layers parallel to {101} and the peripheral AsO4 tetrahedra link to CaO6 octahedra in the interlayer region, resulting in a framework structure.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2011 ◽  
Vol 75 (5) ◽  
pp. 2677-2686 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
R. Cabella ◽  
G. Lucchetti

AbstractBassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).


2018 ◽  
Vol 83 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Irina O. Galuskina ◽  
Frank Gfeller ◽  
Evgeny V. Galuskin ◽  
Thomas Armbruster ◽  
Yevgeny Vapnik ◽  
...  

AbstractDargaite, ideally BaCa12(SiO4)4(SO4)2O3, is an additional member of the arctite group belonging to minerals with a modular intercalated antiperovskite structure derived from hatrurite. The holotype specimen was found at a small outcrop of larnite pseudoconglomerates in the Judean Mts, West Bank, Palestinian Autonomy. Larnite, fluorellestadite–fluorapatite, brownmillerite, fluormayenite–fluorkyuygenite and ye'elimite are the main minerals of the holotype specimen; ternesite, shulamitite and periclase are noted rarely. Dargaite, nabimusaite and gazeevite occur in linear zones with higher porosity within larnite rocks. Pores are filled with ettringite and Ca-hydrosilicates, less commonly with gibbsite, brucite, baryte, katoite and calciolangbeinite. Dargaite is colourless, transparent with a white streak and has a vitreous lustre. It exhibits pronounced parting and imperfect cleavage along (001). Mohs’ hardness is ~4.5–5.5. The empirical formula is (Ba0.72K0.24Na0.04)Σ1(Ca11.95Mg0.04Na0.01)Σ12([SiO4]0.91 [PO4]0.05[AlO4]0.03[Ti4+O4]0.01)Σ4([SO4]0.84[PO4]0.14[CO3]0.02)Σ2(O2.54F0.46)Σ3. Dargaite is trigonal R$\overline 3 $m, the unit-cell parameters are: a = 7.1874(4) Å, c = 41.292(3) Å, V = 1847.32(19) Å3 and Z = 3. The crystal structure of dargaite was refined from X-ray single-crystal data to R1 = 3.79%. The calculated density is 3.235 g cm–3. The following main Raman bands are distinguished on the holotype dargaite (cm–1): 122, 263, 323, 464, 523, 563, 641 and 644, 829 and 869, 947, 991 and 1116. The formation conditions of dargaite are linked to the local occurrence of pyrometamorphic by-products (gases, fluids and melts) transforming earlier mineral associations at ~900°C.


Sign in / Sign up

Export Citation Format

Share Document