Modelling coupled processes in bentonite: recent results from the UK's contribution to the Äspö EBS Task Force

2012 ◽  
Vol 76 (8) ◽  
pp. 3033-3043 ◽  
Author(s):  
D. Holton ◽  
S. Baxter ◽  
A. R. Hoch

AbstractA range of potential concepts for the geological disposal of high level wastes and spent fuel are being studied and considered in the UK. These include concepts that use bentonite as a buffer material around the waste containers. The bentonite will be required to fulfil certain safety functions, the most important being (1) to protect the waste containers from detrimental thermal, hydraulic, mechanical and chemical processes; and (2) to retard the release of radionuclides from any waste container that fails. The bentonite should have a low permeability and a high sorption capacity.These safety functions could be challenged by certain features, events and processes (FEPs) that may occur during the evolution of the disposal system. A consideration of how these FEPs may affect the safety functions can be used to identify and to prioritize the important areas for research on bentonite. We identify these important areas (which include hydration of compacted bentonite, illitization and erosion of bentonite), and describe how they are being investigated in current international research on bentonite.The Äspö EBS Task Force is a collaborative international project designed to carry out research on bentonite. In 2011, the Nuclear Decommissioning Authority Radioactive Waste Management Directorate joined the EBS Task Force partly to benefit from its collective experience. The work of the EBS Task Force is split into two research subareas: (1) the THM subarea, which includes tasks to understand homogenization of bentonite as it resaturates, to investigate the hydraulic interaction between bentonite and fractured rock, and to model in situ experiments; and (2) the THC subarea, which includes tasks to investigate the issue of understanding transport through bentonite, and to model in situ experiments. In particular, the bentonite rock interaction experiment is a large-scale in situ experiment concerned with understanding groundwater exchange across bentonite rock interfaces, with the objective of establishing better understanding of bentonite wetting. In this paper, we describe our work to model the spatial and temporal resaturation of bentonite buffer in a fractured host rock.

2018 ◽  
Vol 482 (1) ◽  
pp. 285-300 ◽  
Author(s):  
S. Baxter ◽  
D. Holton ◽  
S. Williams ◽  
S. Thompson

AbstractA geological disposal facility (GDF) is the widely accepted long-term solution for the management of higher-activity radioactive waste. It consists of an engineered facility constructed in a suitable host rock. The facility is designed to inhibit the release of radioactivity by using a system consisting of engineered and natural barriers. The engineered barriers include the wasteform, used to immobilize the waste, the waste disposal container and any buffer material used to protect the container. The natural barrier includes the rocks in which the facility is constructed. The careful design of this multi-barrier system enables the harmful effects of the radioactivity on humans and biota in the surface environment to be reduced to safe levels.Bentonite is an important buffer material used as a component of a multi-barrier disposal system. For example, compacted bentonite rings and blocks are used to protect the copper container, used for the disposal of spent fuel, in the KBS-3 disposal system. As the bentonite saturates, through contact with groundwater from the host rock, it swells and provides a low hydraulic conductivity barrier, enabling the container to be protected from deleterious processes, such as corrosion. The characteristic swelling behaviour of bentonite is due to the presence of significant quantities of sodium montmorillonite.Recently, there have been detailed in situ experiments designed to understand how bentonite performs under natural conditions. One such experiment is the Buffer–Rock Interaction Experiment (BRIE), performed at the Äspö Hard Rock Laboratory near Oskarshamn in the SE of Sweden. This experiment is designed to further understand the wetting of bentonite from the groundwater flow in a fractured granite host rock.In this paper, the observations from the BRIE are explained using an integrated model that is able to describe the saturation of bentonite emplaced in a heterogeneous fractured rock. It provides a framework to understand the key processes in both the rock and bentonite. The predictive capability of these models was investigated within the context of uncertainties in the data and the consequence for predictions of the wetting of emplaced bentonite. For example, to predict the wetting of emplaced bentonite requires an understanding of the distribution of fracture transmissivity intersecting the bentonite. A consequence of these findings is that the characterization of the fractured rock local to the bentonite is critical to understanding the subsequent wetting profiles. In particular, prediction of the time taken to achieve full saturation of bentonite using a simplified equivalent homogeneous description of the fractured host rock will tend to be too short.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Loredana Buchan ◽  
Momna Hejmadi ◽  
Liam Abrahams ◽  
Laurence D. Hurst

AbstractCurrent educational discourse holds that effective pedagogy requires engagement through active student participation with subject matter relating to them. The lack of testing of lessons in series is recognized as a potential weakness in the evidence base, not least because standard parallel designs cannot capture serial interaction effects (cf. drug interactions). However, logistic issues make large-scale replicated in situ assessment of serial designs challenging. The recent introduction of evolution into the UK primary school curriculum presents a rare opportunity to overcome this. We implemented a randomised control 2 × 2 design with four inexpensive schemes of work, comparable to drug interaction trials. This involved an initial test phase (N = 1152) with replication (N = 1505), delivered by teachers, after training, in their classrooms with quantitative before-after-retention testing. Utilising the “genetics-first” approach, the schemes comprised four lessons taught in the same order. Lessons 1 (variation) and 3 (deep-time) were invariant. Lesson 2 (selection) was either student-centred or teacher-centred, with subject organism constant, while lesson 4 (homology) was either human-centred or not, with learning mode constant. All four schemes were effective in replicate, even for lower ability students. Unexpectedly, the teacher-focused/non-human centred scheme was the most successful in both test and replicate, in part owing to a replicable interaction effect but also because it enabled engagement. These results highlight the importance of testing lessons in sequence and indicate that there are many routes to effective engagement with no “one-size fits all” solution in education.


2020 ◽  
Author(s):  
Hsiao-Yuan Tammy Hsu ◽  
Fred Worrall ◽  
Andy Aplin

<p>     The potential development of shale gas has brought with it several concerns about environmental impacts, these include: induced seismicity, air pollution, and groundwater contamination. During hydraulic fracturing for shale gas, large volumes of oxic and acidic water are injected into the gas-bearing formations. The injected fluids contain a range of additives and will mix and react with the in-situ groundwater and shale rock with the potential to drive water-rock interactions; release metal contaminants; alter the permeability of the bedrock; with each of these affecting the transport and recovery of water, hydrocarbons, and contamination. The purpose of this study is to understand the geochemical processes and inorganic metals release during hydraulic fracturing to assess the potential contribution of fluid-rock interaction for the composition of produced waters and alteration of shale mechanical properties.<br>     The study has: <br>i) Statistically analysed the chemical composition of hydraulic fracturing in USGS dataset to create prior distributions for the prediction of the salinity and chemical composition of flowback fluids in the UK. <br>ii) Statistically analysed the composition and controls on geothermal waters in the UK. Deep geothermal waters are an analogue for the in-situ groundwater composition with which injected fracking fluids will react and mix.<br>iii) Both sources of information have assisted in the design of the high pressure, high temperature experiments that will simulate the fracking fluid processes<br>iv) Undertaken sequential extraction of target shales to understand the data from existing batch experiments undertaker</p><p>     Future work will include isotope proxy and mineralogical texture studies to predict flowback fluid composition and the post-frack condition of the shale.</p>


1989 ◽  
Vol 176 ◽  
Author(s):  
H.S. Radhakrishna ◽  
K.-C Lau ◽  
B.H. Kjartanson ◽  
S.C.H. Cheung

ABSTRACTIn the Canadian nuclear fuel waste management concept, a number of engineered barriers, such as the bentonite-sand buffer which surrounds the waste container in the emplacement boreholes, are used to inhibit the transport of radionuclides. The buffer material is also required to effectively conduct heat from the fuel-waste containers to the surrounding rock. To a large extent, in situ buffer performance will depend on the degree of moisture within the buffer. The moisture content will in turn depend on temperature, temperature gradients, and buffer initial and moisture flux boundary conditions. Modelling of coupled heat and moisture transport in the buffer before resaturation is necessary to assess in situ buffer performance. This paper describes the results of a parametric study using the Philip and de Vries coupled heat and moisture transport model to assess the effects of variations in the moisture diffusivity parameters and the boundary conditions on buffer performance.The results show that the thermal performance of the buffer is affected by heat-induced moisture movement. In particular, the thermal vapour diffusivity, DTvap, has the most significant effect on thermal drying in a closed system. Work is currently underway to improve our capability to model coupled heat and moisture transport in buffer. Laboratory experiments are in progress to more accurately define the moisture diffusivity parameters and the model is being modified to include the effects of boundary moisture fluxes and pressure potentials so that the resaturation process may be modelled. A full scale buffer/container experiment is currently being planned for conduct in AECL's Underground Research Laboratory to assess further the effects of scale and in situ boundary conditions on buffer performance and to qualify the model.


2008 ◽  
Vol 37 (4) ◽  
pp. 661-681 ◽  
Author(s):  
ALEXY BUCK ◽  
PASCOE PLEASENCE ◽  
NIGEL J. BALMER

AbstractOver recent years there has been increasing policy concern in the UK about whether citizens are equipped with sufficient legal ‘know-how’. In January 2006, the Department for Constitutional Affairs, now Ministry of Justice, announced a Public Legal Education and Support Task Force to develop and promote the case for a national strategy. This comes after UK government strategies have recently been developed for both consumer education and financial capability. Drawing on empirical data, this article explores whether there is indeed a lack of awareness and confidence among the population of England and Wales in regard to legal issues. The results from the English and Welsh Civil and Social Justice Survey, a large-scale face-to-face survey representative of the population, illustrate the case for targeted as well as general public legal education initiatives.


1990 ◽  
Vol 212 ◽  
Author(s):  
B. H. Kjartanson ◽  
M. N. Gray ◽  
B.C.M. Pulles

ABSTRACTAECL Research is carrying out large-scale in situ experiments at its Underground Research Laboratory (URL). The Buffer/Container Experiment is designed principally to investigate the full scale, in situ performance of bentonite-based buffer material in a single emplacement borehole environment. In addition, the response of the rock to excavation and heating will be investigated. The experiment also allows for the development of the technologies needed to demonstrate some of the vault engineering activities proposed in the Canadian nuclear fuel waste disposal concept. These include excavation of large diameter boreholes for waste emplacement and in situ compaction of a bentonite/sand buffer mixture. Although these methodologies developed for the URL have not been optimized for the commercial, full-scale operations needed for a disposal vault, results show that the equipment and methodologies needed for vault operations are a reasonable extrapolation of existing technology.


2018 ◽  
Vol 23 (suppl_1) ◽  
pp. e16-e16
Author(s):  
Ahmed Moussa ◽  
Audrey Larone-Juneau ◽  
Laura Fazilleau ◽  
Marie-Eve Rochon ◽  
Justine Giroux ◽  
...  

Abstract BACKGROUND Transitions to new healthcare environments can negatively impact patient care and threaten patient safety. Immersive in situ simulation conducted in newly constructed single family room (SFR) Neonatal Intensive Care Units (NICUs) prior to occupancy, has been shown to be effective in testing new environments and identifying latent safety threats (LSTs). These simulations overlay human factors to identify LSTs as new and existing process and systems are implemented in the new environment OBJECTIVES We aimed to demonstrate that large-scale, immersive, in situ simulation prior to the transition to a new SFR NICU improves: 1) systems readiness, 2) staff preparedness, 3) patient safety, 4) staff comfort with simulation, and 5) staff attitude towards culture change. DESIGN/METHODS Multidisciplinary teams of neonatal healthcare providers (HCP) and parents of former NICU patients participated in large-scale, immersive in-situ simulations conducted in the new NICU prior to occupancy. One eighth of the NICU was outfitted with equipment and mannequins and staff performed in their native roles. Multidisciplinary debriefings, which included parents, were conducted immediately after simulations to identify LSTs. Through an iterative process issues were resolved and additional simulations conducted. Debriefings were documented and debriefing transcripts transcribed and LSTs classified using qualitative methods. To assess systems readiness and staff preparedness for transition into the new NICU, HCPs completed surveys prior to transition, post-simulation and post-transition. Systems readiness and staff preparedness were rated on a 5-point Likert scale. Average survey responses were analyzed using dependent samples t-tests and repeated measures ANOVAs. RESULTS One hundred eight HCPs and 24 parents participated in six half-day simulation sessions. A total of 75 LSTs were identified and were categorized into eight themes: 1) work organization, 2) orientation and parent wayfinding, 3) communication devices/systems, 4) nursing and resuscitation equipment, 5) ergonomics, 6) parent comfort; 7) work processes, and 8) interdepartmental interactions. Prior to the transition to the new NICU, 76% of the LSTs were resolved. Survey response rate was 31%, 16%, 7% for baseline, post-simulation and post-move surveys, respectively. System readiness at baseline was 1.3/5,. Post-simulation systems readiness was 3.5/5 (p = 0.0001) and post-transition was 3.9/5 (p = 0.02). Staff preparedness at baseline was 1.4/5. Staff preparedness post-simulation was 3.3/5 (p = 0.006) and post-transition was 3.9/5 (p = 0.03). CONCLUSION Large-scale, immersive in situ simulation is a feasible and effective methodology for identifying LSTs, improving systems readiness and staff preparedness in a new SFR NICU prior to occupancy. However, to optimize patient safety, identified LSTs must be mitigated prior to occupancy. Coordinating large-scale simulations is worth the time and cost investment necessary to optimize systems and ensure patient safety prior to transition to a new SFR NICU.


Sign in / Sign up

Export Citation Format

Share Document