Flurlite, Zn3Mn2+Fe3+(PO4)3(OH)2·9H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, with a schoonerite-related structure

2015 ◽  
Vol 79 (5) ◽  
pp. 1175-1184 ◽  
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
W. G. Mumme ◽  
A. Pring ◽  
C. M. Macrae ◽  
...  

AbstractFlurlite, ideally Zn3Mn2+Fe3+(PO4)3(OH)2·9H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Flurlite occurs as ultrathin (<1 μm) translucent platelets that form characteristic twisted accordion-like aggregates. The colour varies from bright orange red to dark maroon red. Cleavage is perfect parallel to (001). The mineral occurs on mitridatite and is closely associated with plimerite. Other associated minerals are beraunite, schoonerite, parascholzite, robertsite and altered phosphophyllite. The calculated density of flurlite is 2.84 g cm–3. It is optically biaxial (–), α = 1.60(1), β= 1.65(1) and γ = 1.68(1), with weak dispersion and parallel extinction, X ≈ c, Y ≈ a, Z ≈ b. Pleochroism is weak, with colours: X = pale yellow, Y = pale orange, Z = orange brown. Electron microprobe analyses (average of seven) with FeO and Fe2O3 apportioned and H2O calculated on structural grounds, gave ZnO 25.4, MnO 5.28, MgO 0.52, FeO 7.40, Fe2O3 10.3, P2O5 27.2, H2O 23.1, total 99.2 wt.%. The empirical formula, based on 3 P a.p.f.u. is Zn2.5Mn2+0.6Fe2+0.8Mg0.1Fe3+(PO4)3(OH)2·9H2O. Flurlite is monoclinic, P21/m, with the unit-cell parameters (at 100 K) of a = 6.3710(13), b = 11.020(2), c = 13.016(3) Å, β = 99.34 (3)°. The strongest lines in the X-ray powder diffraction pattern are [dobs in Å(I) (hkl)] 12.900(100)(001); 8.375(10)(011); 6.072(14)(101); 5.567(8)(012); 4.297(21)(003); 2.763(35)(040). Flurlite (R1 = 0.057 for 995 F > 4σ(F)) has a heteropolyhedral layer structure, with layers parallel to (001) and with water molecules packing between the layers. The slab-like layers contain two types of polyhedral chains running parallel to [100]: (a) chains of edge-sharing octahedra containing predominantly Zn and (b) chains in which Fe3+-centred octahedra share their apices with dimers comprising Zn-centred trigonal bipyramids sharing an edge with PO4 tetrahedra. The two types of chains are interconnected by corner-sharing along [010]. A second type of PO4 tetrahedron connects the chains to MnO2(H2O)4 octahedra along [010] to complete the structure of the (001) slabs. Flurlite has the same stoichiometry as schoonerite, but with dominant Zn rather than Fe2+ in the edge-shared chains. Schoonerite has a similar heteropolyhedral layer structure with the same layer dimensions 6.4 × 11.1 Å. The different symmetry (orthorhombic, Pmab) for schoonerite reflects a different topology of the layers.

2013 ◽  
Vol 77 (1) ◽  
pp. 81-91 ◽  
Author(s):  
A. R. Kampf ◽  
J. J. Pluth ◽  
Y.-S. Chen ◽  
A. C. Roberts ◽  
R. M. Housley

AbstractBobmeyerite, Pb4(Al3Cu)(Si4 O12)(S0.5Si0.5O4)(OH)7 Cl(H2O)3, is a new mineral from the Mammoth - Saint Anthony mine, Tiger, Pinal County, Arizona, USA. It occurs in an oxidation zone assemblage attributed to progressive alteration and crystallization in a closed system. Other minerals in this assemblage include atacamite, caledonite, cerussite, connellite, diaboleite, fluorite, georgerobinsonite, hematite, leadhillite, matlockite, murdochite, phosgenite, pinalite, quartz, wulfenite and yedlinite. Bobmeyerite occurs as colourless to white or cream-coloured needles, up to 300 m m in length, that taper to sharp points. The streak is white and the lustre is adamantine, dull or silky. Bobmeyerite is not fluorescent. The hardness could not be determined, the tenacity is brittle and no cleavage was observed. The calculated density is 4.381 g cm-3. Bobmeyerite is biaxial (-) with α ≈ β = 1.759(2), γ = 1.756(2) (white light), it is not pleochroic; the orientation is X = c; Y or Z = a or b. Electron-microprobe analyses provided the empirical formula Pb3.80Ca0.04Al3.04Cu2+0.96Cr3+0.13Si4.40S0.58O24.43Cl1.05F0.52H11.83. Bobmeyerite is orthorhombic (pseudotetragonal), Pnnm with unit-cell parameters a = 13.969(9), b = 14.243(10), c = 5.893(4) Å, V = 1172.5(1.4) Å3 and Z = 2. The nine strongest lines in the X-ray powder diffraction pattern, listed as [dobs (Å)(I)(hkl)], are as follows: 10.051(35)(110); 5.474(54)(011,101); 5.011(35)(220); 4.333(43)(121,211); 3.545(34)(040,400); 3.278(77)(330,231,321); 2.9656(88)(141,002,411); 2.5485(93)(051,222,501); 1.873(39)(multiple). Bobmeyerite has the same structural framework as cerchiaraite and ashburtonite. In the structure, which refined to R1 = 0.079 for 1057 reflections with F > 4σF, SiO4 tetrahedra share corners to form four-membered Si4O12 rings centred on the c axis. The rings are linked by chains of edge-sharing AlO6 octahedra running parallel to [001]. The framework thereby created contains large channels, running parallel to [001]. The Cl site is centred on the c axis alternating along [001] with the Si4O12 rings. Two non-equivalent Pb atoms are positioned around the periphery of the channels. Both are elevencoordinate, bonding to the Cl atom on the c axis, to eight O atoms in the framework and to two O (H2O) sites in the channel. The Pb atoms are off-centre in these coordinations, as is typical of Pb2+ with stereo-active lone-electron pairs. A (S, Si, Cr)O4 group is presumed to be disordered in the channel. The name honours Robert (Bob) Owen Meyer, one of the discoverers of the new mineral.


2010 ◽  
Vol 74 (1) ◽  
pp. 147-157 ◽  
Author(s):  
A. Garavelli ◽  
T. Balić-Žunić ◽  
D. Mitolo ◽  
P. Acquafredda ◽  
E. Leonardsen ◽  
...  

AbstractHeklaite, with the ideal formula KNaSiF6, was found among fumarolic encrustations collected in 1992 on the Hekla volcano, Iceland. Heklaite forms a fine-grained mass of micron- to sub-micron-sized crystals intimately associated with malladrite, hieratite and ralstonite. The mineral is colourless, transparent, non-fluorescent, has a vitreous lustre and a white streak. The calculated density is 2.69 g cm–3. An SEM-EDS quantitative chemical analysis shows the following range of concentrations (wt.%): Na 11.61–12.74 (average 11.98), K 17.02–18.97 (average 18.29), Si 13.48 –14.17 (average 13.91), F 54.88–56.19 (average 55.66). The empirical chemical formula, calculated on the basis of 9 a.p.f.u., is Na1.07K0.96Si1.01F5.97. X-ray powder diffraction indicates that heklaite is orthorhombic, space group Pnma, with the following unit-cell parameters: a = 9.3387(7) Å, b = 5.5032(4) Å, c = 9.7957(8) Å , V = 503.43(7) Å3, Z = 4. The eight strongest reflections in the powder diffraction pattern [d in Å (I/I0) (hkl)] are: 4.33 (53) (102); 4.26 (56) (111); 3.40 (49) (112); 3.37 (47) (202); 3.34 (100) (211); 2.251 (27) (303); 2.050 (52) (123); 2.016 (29) (321). On the basis of chemical analyses and X-ray data, heklaite corresponds to the synthetic compound KNaSiF6. The name is for the type locality, the Hekla volcano, Iceland.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo &gt; 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


1988 ◽  
Vol 41 (9) ◽  
pp. 1305 ◽  
Author(s):  
JM Frederiksen ◽  
E Horn ◽  
MR Snow ◽  
ERT Tiekink

The crystal structures of the diastereoisomers formed between the hydrogen-D-tartrate anion and the cations (+)-(Λ-[Co(en)2(NO2)2]+ (1) and (-)-(Δ)-[Co(en)2(NO2)2]+ (2) have been determined by three-dimensional X-ray analysis. The crystal structures are comprised of octahedrally coordinated cobalt atoms, hydrogentartrate anions and water molecules interconnected by a complex hydrogen bonding network. In (1), columns of complex parallel to a 21 screw axis along a, are linked via hydrogen bonding contacts to a total of six chains of 'head-to-tail' hydrogentartrate strands. In contrast, in (2) the chains of hydrogentartrate anions associate with each other to form well defined 'walls' which sandwich hydrogen-bonded columns of complex cations such that the structure may be thought of as a layer structure of hydrogentartrate anions and complex cations. Crystals of both compounds are orthorhombic, space group P212121 with Z = 4, unit cell parameters for (1): a 7.670(1), b 12.160(1), c 18.028(1)Ǻ, V 1681.4 Ǻ3 and for (2): a 7.735(2), b 8.505(5), c 26.846(9) Ǻ, V 1766 1 Ǻ3. The structures were each refined by a full-matrix least-squares procedure to final R 0.026, Rw 0.027 for 1764 reflections with I ≥ 2.5σ(I) for (1) and R 0.065, Rw 0.073 for 1322 reflections for (2).


2021 ◽  
Vol 29 (2) ◽  
pp. 241-248
Author(s):  
Jiří Sejkora ◽  
Roman Gramblička

The zýkaite samples were found at abandoned Lehnschafter mine near Mikulov in the Krušné hory Mts. (Czech Republic). It occurs as irregular white to light greenish rounded to spherical aggregates up to 1.5 cm in size composed of tiny acicular crystals up to 5 - 10 μm in length. Its empirical formula can be expressed as (Fe3.79Al0.02)Σ3.81[(AsO4)2.66(PO4)0.20(SiO4)0.07]Σ2.93 (SO4)1.07(OH)0.44·15H2O (mean of 3 spot analyzes; on the basis of As+P+S+Si = 4 apfu).Zýkaite is probably monoclinic, with the unit-cell parameters refined from X-ray powder diffraction data: a 21.195(8), b 7.052(2), c 36.518(17) Å, β 91.07(2)° and V 5458(2) Å3. Raman spectroscopy documented the presence of both (AsO4)3- and (SO4)2- units in the crystal structure of zýkaite. Multiple Raman bands connected with vibrations of water molecules and (AsO4)3- groups indicate the presence of more structurally non-equivalent these groups in the crystal stucture of zýkaite.


2005 ◽  
Vol 69 (2) ◽  
pp. 145-153 ◽  
Author(s):  
R. S. W. Braithwaite ◽  
R. G. Pritchard ◽  
W. H. Paar ◽  
R. A. D. Pattrick

AbstractTiny green crystals from Kabwe, Zambia, associated with hopeite and tarbuttite (and probably first recorded in 1908 but never adequately characterized because of their scarcity) have been studied by X-ray diffraction, microchemical and electron probe microanalysis, infrared spectroscopy, and synthesis experiments. They are shown to be orthorhombic, stoichiometric CuZnPO4OH, of species rank, forming the end-member of a solid-solution series to libethenite, Cu2PO4OH, and are named zincolibethenite. The libethenite structure is unwilling to accommodate any more Zn substituting for Cu at atmospheric pressure, syntheses using Zn-rich solutions precipitating a mixture of zincolibethenite with hopeite, Zn3(PO4)2.4H2O. Single-crystal X-ray data confirm that the Cu(II) occupies the Jahn-Teller distorted 6-coordinate cation site in the libethenite lattice, and the Zn(II) occupies the 5-coordinate site. The space group of zincolibethenite is Pnnm, the same as that of libethenite, with unit-cell parameters a = 8.326, b = 8.260, c = 5.877 Å , V = 404.5 Å 3, Z = 4, calculated density = 3.972 g/cm3 (libethenite has a = 8.076, b = 8.407, c = 5.898 Å , V = 400.44 Å 3, Z = 4, calculated density = 3.965 g/cm3). Zincolibethenite is biaxial negative, with 2Vα(calc.) of 49°, r<v, and α = 1.660, β = 1.705, and γ = 1.715 The mineral is named for its relationship to libethenite.


2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


2013 ◽  
Vol 77 (7) ◽  
pp. 2931-2939 ◽  
Author(s):  
U. Hålenius ◽  
F. Bosi

AbstractOxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 385 ◽  
Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Andreas Karlsson ◽  
Jörgen Langhof ◽  
Thomas Zack ◽  
...  

Kesebolite-(Ce), ideal formula CeCa2Mn(AsO4)[SiO3]3, is a new mineral (IMA No. 2019-097) recovered from mine dumps at the Kesebol Mn-(Fe-Cu) deposit in Västra Götaland, Sweden. It occurs with rhodonite, baryte, quartz, calcite, talc, andradite, rhodochrosite, K-feldspar, hematite, gasparite-(Ce), chernovite-(Y) and ferriakasakaite-(Ce). It forms mostly euhedral crystals, with lengthwise striation. The mineral is dark grayish-brown to brown, translucent, with light brown streak. It is optically biaxial (+), with weak pleochroism, and ncalc = 1.74. H = 5–6 and VHN100 = 825. Fair cleavage is observed on {100}. The calculated density is 3.998(5) g·cm−3. Kesebolite-(Ce) is monoclinic, P21/c, with unit-cell parameters from X-ray single-crystal diffraction data: a = 6.7382(3), b = 13.0368(6), c = 12.0958(6) Å, β = 98.578(2)°, and V = 1050.66(9) Å3, with Z = 4. Strongest Bragg peaks in the X-ray powder pattern are: [I(%), d(Å) (hkl)] 100, 3.114 (20-2); 92, 2.924 (140); 84, 3.138 (041); 72, 2.908 (014); 57, 3.228 (210); 48, 2.856 (042); 48, 3.002 (132). The unique crystal structure was solved and refined to R1 = 4.6%. It consists of 6-periodic single silicate chains along (001); these are interconnected to infinite (010) strings of alternating, corner-sharing MnO6 and AsO4 polyhedra, altogether forming a trellis-like framework parallel to (100).


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


Sign in / Sign up

Export Citation Format

Share Document